Действительно, почти все основные расчеты в теории струн сделаны на многообразиях Калаби-Яу просто потому, что мы знаем, как выполнять вычисления на этом пространстве. Благодаря «теореме Калаби-Яу», которая возникла из доказательства гипотезы Калаби, считает математик Дэвид Моррисон из Калифорнийского университета в Санта-Барбаре: «У нас есть методы из алгебраической геометрии, которые, в принципе, позволяют нам изучать и анализировать все многообразия Калаби-Яу. У нас нет таких же сильных методов, чтобы справиться с не-кэлеровыми многообразиями или семимерными многообразиями G2, которые играют важную роль в М-теории. В результате большей части своих успехов мы обязаны многообразиям Калаби-Яу, поскольку у нас есть инструменты для их изучения, которых у нас нет для других видов решений».[302] В этом смысле многообразия Калаби-Яу явились для нас своего рода лабораторией для экспериментов или, по крайней мере, для обдумывания экспериментов, которые помогают нам в изучении теории струн и, надеюсь, Вселенной в целом.
«Тот факт, что мы начали думать о Калаби-Яу как о математических объектах раньше, чем отвели для них значимую роль в физике, свидетельствует о силе человеческого разума, — отмечает стэндфордский математик Рави Вакил. — Мы не навязываем Калаби-Яу природе, но, похоже, природа навязывает их нам».[303]
Это не означает, однако, что пространства Калаби-Яу обязательно являются последним словом в науке или что мы даже
Говоря как математик, а я полагаю, что только так и могу говорить (с любой властью), я могу сказать, что полного понимания пространства Калаби-Яу пока не существует. И у меня есть сомнения в том, сможем ли мы когда-нибудь узнать все, что нам необходимо знать о таких пространствах. Одна из причин моего скептицизма связана с тем фактом, что одномерное Калаби-Яу называется эллиптической кривой, а эти кривые, представляющие собой решения кубического уравнения, в котором по крайней мере некоторые члены возведены в третью степень, являются загадочными объектами в математике. Кубические уравнения очаровывают математиков на протяжении веков. Хотя уравнения имеют простую форму (например,
У нас есть основания полагать, что обобщения эллиптических кривых на более высокие размерности, из которых трехмерное пространство Калаби-Яу представляет собой только один из вариантов, можно использовать для решения серьезных загадок в математике, поскольку мы часто узнаем что-то новое, помещая особые случаи, такие как эллиптические кривые, в более общие, многомерные (любой размерности) пространства. На этом фронте изучение двухмерных пространств Калаби-Яу, то есть комплексных поверхностей K3, уже помогло ответить на некоторые вопросы теории чисел.
Но эта работа только начинается, и мы понятия не имеем, куда она нас заведет. На данном этапе было бы справедливым сказать, что мы едва поцарапали поверхность, неважно, является ли она поверхностью K3 или другой разновидностью Калаби-Яу. Вот почему я считаю, что глубокое понимание этих пространств может оказаться невозможным, пока мы не поймем значительную часть математики, которая охватывает геометрию, теорию чисел и анализ.
Кто-то может считать это плохой новостью, но я вижу в этом только хорошее. Это означает, что многообразия Калаби-Яу, как и сама математика, совершенствуются, идя дорогой, которая, несомненно, имеет много изгибов и поворотов. Это значит, что впереди еще много нового, что нам предстоит узнать и сделать. И тем из нас, кто боится остаться без работы, без любимого занятия и даже без научных сюрпризов, не о чем беспокоиться: в ближайшие годы такой проблемы не возникнет.
Вхождение в святая святых