Читаем Теория всего полностью

Для того чтобы избежать описанных трудностей, связанных с самыми ранними стадиями в модели горячего Большого Взрыва, Алан Гут из Массачусетского технологического института предложил новую модель[1]. В модели Гута множество различных начальных конфигураций могут эволюционировать в некое подобие нынешней Вселенной. Гут предположил, что новорожденная Вселенная могла пережить период очень быстрого, экспоненциального, расширения. Такое расширение называют инфляционным — по аналогии со стремительным ростом цен, в большей или меньшей степени происходящим в каждой стране. Мировой рекорд инфляции цен, вероятно, был поставлен в Германии после Первой мировой войны, когда цена буханки хлеба за несколько месяцев подскочила от одной марки до нескольких миллионов. Инфляция, которая, как мы думаем, могла происходить в масштабе Вселенной, была гораздо значительней: размеры Вселенной за ничтожную долю секунды выросли в миллион миллионов миллионов миллионов миллионов раз. Гут допустил, что Вселенная после Большого Взрыва была очень горячей. Правомерно ожидать, что при крайне высоких температурах сильные и слабые ядерные силы должны объединиться с электромагнитной силой в некую единую силу. Расширяясь, Вселенная остывала, и энергия частиц уменьшалась. Рано или поздно должно было произойти то, что называют фазовым переходом, и симметрия сил была нарушена. Сильное ядерное взаимодействие отделилось от слабого и электромагнитного. Типичным примером фазового перехода может служить превращение воды в лед при охлаждении. Жидкая вода симметрична, обладает одинаковыми свойствами во всех точках и во всех направлениях. Однако образующиеся при замерзании кристаллы льда характеризуются выделенной направленностью и заметной пространственной упорядоченностью. Это нарушает симметрию воды.

При известном старании воду можно переохладить — добиться того, чтобы ее температура опустилась ниже точки замерзания (0°С), но лед не образовался. Гут предположил, что нечто подобное происходило со Вселенной: температура стала ниже критического значения, но симметрия физических взаимодействий не была нарушена. Если произошло нечто подобное, Вселенная должна была прийти в нестабильное состояние, энергия которого выше, чем у состояния с нарушенной симметрией. Можно показать, что эта особая избыточная энергия обладала антигравитационным эффектом. Она должна была действовать как космологическая постоянная.

Эйнштейн ввел космологическую постоянную в общую теорию относительности, когда пытался построить стационарную модель Вселенной. Однако в рассматриваемом нами случае Вселенная уже расширяется. Отталкивающий эффект космологической постоянной заставил бы Вселенную расширяться с постоянно возрастающей скоростью. Даже в тех областях, где содержание частиц выше среднего, гравитационное притяжение материи уступает отталкиванию, обусловленному эффективной космологической постоянной. Так что и такие области будут расширяться в ускоренном, инфляционном, режиме.

По мере расширения Вселенной расстояние между частицами увеличивается. А значит, мы можем получить Вселенную, где едва ли найдется хоть одна частица. Она все еще будет оставаться в переохлажденном состоянии, при котором сохраняется симметрия между взаимодействиями. Любые неоднородности будут попросту сглажены расширением, как разглаживаются складки на туго надутом воздушном шарике. Таким образом, современное гладкое и однородное состояние Вселенной могло возникнуть из множества различных неоднородных начальных состояний. Скорость расширения также стремится к критической, позволяющей избежать коллапса.

Более того, инфляционная модель позволяет объяснить, почему во Вселенной так много материи. В наблюдаемой нами области Вселенной насчитывается около 1080 элементарных частиц. Откуда они могли появиться? Ответ таков: согласно квантовой теории, частицы могут возникать из энергии в виде пар частица/античастица. Но откуда берется необходимая для этого энергия? Объяснение состоит в том, что полная энергия Вселенной в точности равна нулю.

Вещество во Вселенной возникло из положительной энергии. Однако материя притягивает самое себя под действием гравитации. Два куска материи, которые находятся близко друг к другу, обладают меньшей энергией, чем те, которые разделены большим расстоянием. Это происходит потому, что для их разделения необходимо затратить энергию. Вы должны преодолеть действующие между ними гравитационные силы. Так что в каком-то смысле можно утверждать, что гравитационное поле обладает отрицательной энергией. При рассмотрении Вселенной в целом можно показать, что

отрицательная гравитационная энергия погашает всю положительную энергию материи. А следовательно, полная энергия Вселенной равна нулю.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки