Читаем Теплотехника полностью

а при учете dT= (PdV + VdP)/ R получим следующую форму записи:

ndV/ V= -dP/ P,

n= (CCP)/ (CCV),

Уравнение имеет решение в виде:

PVn= const,

где P– давление газа;

V– объем газа.

Для политропического процесса характерно наличие частичного теплообмена системы с внешней средой. Кривая политропического процесса расположена на PV-диаграмме между изотермой (Г = const) и адиабатой (Q= const) и называется политропой. С учетом уравнения Менделеева-Клайперона уравнение политропы будет выглядеть следующим образом:

TV n-1 = const,

T nPn-1= const.

Определим работу, которую совершает газ при политропическом процессе:

А12 = (m / M)R(T1 – T2) / (n – 1),

где m– масса газа;

M– молярная масса газа;

R– универсальная газовая постоянная;

n– показатель политропы;

T1 и T2– начальная и конечная температуры.

Случай Т2 > T1 и А12 < 0 соответствует сжатию газа, т. е. работа совершается над ним. Показатель политропы можно получить из опыта. В отдельных случаях политропический процесс может переходить в следующие термодинамические процессы.

1. Адиабатический процесс: С = 0, n= g= C /C и Pg = const, dU= CvdT= -dA, d/ = CpdT= -gdA.

2. Изотермический процесс: С = Ґ, n =1 и PV = const, T = const, dA= PdV, dU= 0, dl = 0, dQ= dA.

3. Изобарический процесс: С = Ср, n= 0 и V/T = const, Р = const, dA = PdV, dU = CVdT, dl= dU+ PdV= dQ = CpdT.

4. Изохорический процесс: С = С, n= Ґ и Р/T = const, V= const, dA= 0, dU= CVdT = dQ, dl = dU + PdV = CpdT.

<p>20. Теплота</p>

Теплотой называется процесс изменения внутренней энергии при постоянных внешних параметрах ч = = const. Тела могут передавать энергию друг другу непосредственно при контакте или излучая ее. Теплоту называют микроскопическим преобразованием энергии. Процесс передачи теплоты определяется работой, которую совершают молекулы при хаотическом тепловом движении. Количество теплоты имеет в СИ следующую размерность: [Q] = Дж. Также пользуются единицами теплоты – калориями, 1 кал = 4,1868 Дж. Если тело, участвующее в процессе, принимает количество теплоты, то его записывают со знаком плюс, а если отдает, то количество теплоты имеет знак минус.

Формула для определения элементарного количества теплоты, которое сообщается телу для изменения его температуры:

dQ= CdT,

где С – теплоемкость тела.

С = dQ / dT.

Физический смысл теплоемкости – это величина, равная тому количеству теплоты, которое необходимо передать телу, чтобы изменить его температуру на 10К. Теплоемкость С определяется массой тела, его химическим составом и термодинамическим состоянием.

Понятие теплоемкости включает в себя понятия удельной и молярной теплоемкости. Теплоемкость единицы массы вещества называют удельной теплоемкостью. В случае однородного тела она равна:

c = C/ m,

где m – масса газа.

Теплоемкость одного моля вещества называют молярной или молекулярной теплоемкостью (обозначается С). Молярная и удельная теплоемкости связаны соотношением:

с = С / М,

где М – молярная масса вещества.

В СИ удельная и молярная теплоемкости имеют следующие размерности: [с] = Дж/кгК, [С] = Дж/мольК.

Понятие теплоемкости включает в себя два вида теплоемкости: при постоянном объеме и при постоянном давлении. Теплоемкость (удельная и молярная) при постоянном объеме определяется нагреванием тела при V = const и обозначается cvи Cv. Теплоемкость (удельная и молярная) при постоянном давлении определяется нагреванием тела при Р = const и обозначается ср и Cp

<p>21. Работа</p>

Работой называется процесс изменения внутренней энергии за счет изменения внешних параметров при dQ= 0. Элементарной работой называется работа, которую совершает система при бесконечно малом квазистатическом расширении, вследствие чего происходит увеличение объема системы на dV:

dA= Fdx = PSdx = PdV,

где Sdx = dV – приращение объема;

S– площадь поверхности, перпендикулярно которой действует сила F;

Р – давление.

Идеализированный процесс, при котором возможен переход системы из одного равновесного состояния в другое состояние равновесия, называют квазистатическим. Характерной чертой квазистатических процессов является равенство внутреннего давления газа внешнему давлению: Р = Р', и dА' = -dА = -Р'dV – работа внешних сил. Для конечного процесса полную работу можно вычислить следующим образом:

то работа А12 не зависит от начального и конечного состояний системы и определяется способом перехода системы из одного состояния в другое. Работа не является функцией состояния.

В случае, когда система имеет несколько степеней свободы, а ее внутреннее состояние определяется внешними параметрами xn и температурой T, над внешними телами системой будет совершаться элементарная работа:

dА = Х1dx1+ Х2dx2+ … + Хndxn,

Перейти на страницу:

Все книги серии Шпаргалки

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки