Сегодня мы знаем, что Тесла был вполне прав, считая направление межпланетного магнитного поля постоянно меняющимся достаточно случайным образом. Именно поэтому обычные суббури, связанные с Южным полюсом, случаются несколько раз за сутки, независимо от текущей солнечной активности. Более известные широкому читателю магнитные бури регистрируются реже. Они непосредственно связаны со вспышками солнечной активности, а точнее, с попаданием Земли в зоны аномально интенсивного солнечного ветра и в межпланетные магнитные облака. При этом величина поля в магнитном облаке у орбиты Земли возрастает в десятки раз, а скорость солнечного ветра — до тысячи километров в секунду. Эффект такого увеличения подобен смене легкого ветерка на ураган. Во время сильной ионосферной бури мощнейшие магнитные суббури следуют одна за другой, а авроральная зона расширяется вплоть до умеренных широт.
Так, во время крупнейшей ионосферной бури очередного солнечного максимума, длившейся более суток, полярные сияния наблюдались даже в Москве. При этом энергия, выделившаяся тогда в магнитосфере Земли, составила эквивалент энергии взрыва ста мегатонн тротила. Несомненно, что изобретатель догадывался о скрытой мощи ионосферных ураганов и всячески пытался воздействовать на них с помощью своего метода электрического резонанса.
Надо сказать, что именно ионосферные исследования Теслы подтолкнули в свое время известного фантаста Фредерика Вильяма Брауна к созданию оригинального рассказа «Волновики». В нем повествуется о новой «полевой» форме жизни, проявляющей себя в виде электромагнитных волн радиодиапазона. А рассказал Брауну о странных опытах «повелителя молний» молодой журналист Кеннет Свизи. Беседуя с Брауном, Свизи поведал об одной очень экстравагантной идее Теслы, предполагавшего, что в насыщенной электричеством среде верхних слоев земной атмосферы вполне может существовать особая «радиоэлектрическая жизнь».
Финал произведения построен в трагикомическом ключе, характерном для творчества фантаста-юмориста. Оказывается, что космические Волновики (так зовут пришельцев из ионосферы) питаются искусственным и атмосферным электричеством. Это быстро приводит к исчезновению бытовой и промышленной электроэнергии, пропадают молнии… ну а история человечества возвращается в век пара!
Но так ли уж легко могут преодолеть космические электромагнитные колебания толщу ионосферы?
Тесла считал это непростым вопросом, жизненно важным для дальнейшего развития радиовещания. Он допускал, что в приповерхностном слое — тропосфере — воздух представляет собой смесь нейтральных молекул различных газов (в основном азота, кислорода и углекислого газа). Следовательно, если нас окружает сухой воздух, то его можно считать хорошим изолятором.
Иначе обстоит дело в глубинах ионосферы, думал изобретатель. Там воздушная среда вполне способна проводить электрический ток, поскольку вместо нейтральных молекул и атомов она содержит «электрокорпускулы» (электроны и ионы). Вспомним, что понятие ионов как положительно или отрицательно заряженных частиц возникло гораздо позже первых моделей «атмосферного электричества» Теслы. Тем не менее великий изобретатель правильно ухватил суть дела, считая, что корпускулы электричества должны возникать под воздействием каких-либо внешних факторов из первичных нейтральных атомов и молекул.
Тесла полагал и считал это очень важным обстоятельством, что молекулы воздуха на всем протяжении стратосферы находятся в постоянно сложном движении. Потоком этого непрекращающегося движения должны быть захвачены и электрические корпускулы, т. е. ионы с электронами. Единственно, до чего не дошел изобретатель в своих рассуждениях, — это до анализа баланса противоположных процессов ионизации и нейтрализации, — рекомбинации, — идущих с различной скоростью на разных высотах.
Вот как описывает это видный советский радиофизик Ф.И. Честнов:
«Представьте себе толпу, в которой каждый человек торопится в нужном ему направлении. Люди будут сталкиваться друг с другом почти на каждом шагу. Но вот толпа поредела, стало свободнее; теперь уже столкновение — редкий случай. Примерно то же мы будем наблюдать и в мире молекул.
Вот мы спускаемся ниже и попадаем в более плотные слои. Частицы воздуха здесь гуще, значит, столкновения происходят чаще, и рекомбинация идет быстрее. Поднимаемся выше, в разреженные слои: столкновения частиц становятся реже, а воссоединение ионов и электронов в нейтральные молекулы идет очень медленно.
Что же произойдет, если действие ионизирующего излучения в верхней атмосфере прекратится? Очевидно, электроны снова «вернутся на свои места», ионизированные частицы в конце концов станут нейтральными, а свободные заряды постепенно исчезнут, и воздух потеряет электрическую проводимость.
Если же ионизирующее излучение будет действовать постоянно и с неизменной силой, то появление новых свободных электронов уравновесит их убыль — насыщенность воздуха свободными зарядами меняться не будет».