Soccer in the Matterhorn (p. 307) In the second edition of
Timeless Descriptions of Dynamics (1) (p. 309) For specialists: for each stage of a perturbation expansion, Mott always chooses a kernel in an integral representation corresponding to outgoing waves. However, nothing in the mathematics rules out the (occasional) choice of incoming waves. This would mess up everything.
(2) (p. 309) I should emphasize that Mott, like Bell, never used any expression like ‘time capsule’, and clearly did not think in such terms about alpha-particle tracks. Neither did Mott’s work on alpha-particle tracks seem to have prompted him to any intimations of a many-worlds type interpretation of quantum mechanics. I learned this from Jim Hartle. Over a decade ago, when collaborating with Stephen Hawking in Cambridge, Jim lodged at his college, Gronville and Caius (featured famously in
A Well-Ordered Cosmos? (p. 321) This final section follows closely the final section of Barbour (1994a).
BOX 16 An Email Dialogue
DOWKER. It seems to me that you provide no scheme for making predictions, and I would further claim that no such scheme can exist which contains the two aspects that are fundamental to your scheme: canonical quantum gravity (CQG) and the Bell version of the many-worlds interpretation (MWI).
BARBOUR. I think you are right, subject to what one means by prediction. I cannot make the kinds of prediction you want, and you correctly identify the reasons. I feel the arguments for CQG and MWI outweigh desire for predictions of the kind you would like.
DOWKER. I freely admit that I am rather attached to the notion of the universe (and I) having had, and being about to have, a continuous history. But my criticism here is not the absence of history in your approach, but, to repeat, that there is no way to make predictions about the results of our observations. In my view this is a deficiency that cannot be overcome. Whatever else science tells us about the world, it must allow us to make predictions about our observations that we can check.
BARBOUR. I am not sure we can impose such a criterion on Nature. The Greeks had the notion of saving appearances (finding a rational explanation for the phenomena we observe) that is already very valuable. You may be asking more of Nature than she is prepared to give.
DOWKER. In backing up this criticism I shall focus on the aspect that I am most familiar with and on which I have most confidence in my own views, which is the aspect of the interpretation of quantum mechanics. I am pleased that your book draws attention to the work of Bell on the many-worlds interpretation, since it has not had the recognition it deserves. In my view his version is the only well-defined many-worlds interpretation (I’ll call it BMWI) that exists in the literature.
BARBOUR. I agree it is well defined, but with reservations about the role of time. The time of an observation, like any other observable, must be extracted from present records. When you start to ask how that is done in practice and how Nature does put time into the records, I think things may become less well defined. I do believe that almost all physicists this century have blindly followed Einstein in declining to try to understand duration at a fundamental level. A lot of the first part of my book is about that. I think my position might be stronger than you realize.