Читаем The End of Time: The Next Revolution in Physics полностью

1925/6: Quantum Mechanics. This gets its name because it shows that some mechanical quantities are found in nature only in multiples of discrete units called quanta. This is a distinctive difference from the theories of Newton and Einstein, which are now called classical (as opposed to quantum) theories. The first quantum effects were discovered and described on an ad hoc basis by Max Planck (1900), Einstein (1905) and Niels Bohr (1913), while a consistent quantum theory was found in two different but equivalent forms: matrix mechanics, by Werner Heisenberg (1925), and wave mechanics, by Erwin Schrödinger (1926). Paul Dirac also made outstanding contributions. Quantum mechanics describes the properties of light, especially lasers, and the microscopic world of atoms and molecules. It is the bedrock of all modern electronic technology, but its results are bafflingly counter-intuitive and raise profound issues about the nature of reality. It is also puzzling that theories of completely different structures are used to describe the macroscopic universe (classical general relativity) and microscopic atoms (quantum mechanics).

Revolutions are what make physics such a fascinating science. Every now and then a totally new perspective is opened up. But it is not that we close the shutters on one window, open them on another, and find ourselves looking out in wonder on a brand-new landscape. The old insights are retained within the new picture. A better metaphor of physics is mountaineering: the higher we climb, the more comprehensive the view. Each new vantage point yields a better understanding of the interconnection of things. What is more, gradual accumulation of understanding is punctuated by sudden and startling enlargements of the horizon, as when we reach the brow of a hill and see things never conceived of in the ascent. Once we have found our bearings in the new landscape, our path to the most recently attained summit is laid bare and takes its honourable place in the new world.

Today, physicists confidently, indeed impatiently, await the next revolution. But what will it be? In 1979, when, like Newton and Dirac before him, Stephen Hawking became the Lucasian Professor at Cambridge, he announced in his inaugural address the imminent end of physics. Within twenty years physicists would possess a theory of everything, created by a double unification: of all the forces of nature, and of Einstein’s general theory of relativity with quantum mechanics. Physicists would then know all the inner secrets of existence, and it would merely remain to work out the consequences.

Neither unification has yet happened, though one or both certainly could. (Hawking has recently said that his prediction still stands but that ‘the twenty years starts now’.) For myself, I doubt that would spell the end of physics. But unification of general relativity and quantum mechanics may well spell the end of time. By this, I mean that it will cease to have a role in the foundations of physics. We shall come to see that time does not exist. Though still only a prospect on the horizon, this, I think, could well be the next revolution. What a denouement if it is!

I believe that the basic elements of this potential revolution – the reasons for it and its likely outcome – can already be discerned. In fact, as we shall shortly see, clear hints that time may not exist, and that quantum gravity – the unification of general relativity and quantum mechanics – will yield a static picture of the quantum universe, started to emerge about thirty years ago, but made remarkably little impact. This is one of my reasons for writing this book: these things should be better known. They are only just beginning to be mentioned in books for the general reader, and even most working physicists know little or nothing about them.

No doubt many people will dismiss the suggestion that time may not exist as nonsense. I am not denying the powerful phenomenon we call time. But is it what it seems to be? After all, the Earth seems to be flat. I believe the true phenomenon is so different that, presented to you as I think it is without any mention of the word ‘time’, it would not occur to you to call it that.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука