iPS cells suddenly create a new way forwards. Take a small scraping of skin cells from our patient, whom we shall call Freddy. Grow these cells in culture until we have enough to work with (this is pretty easy). Use the four Yamanaka factors to create a large number of iPS cells, treat these in the lab to turn them into beta cells and put them back into the patient. There will be no immune rejection because Freddy will just be receiving Freddy cells. Recently, researchers have shown they can do exactly this in mouse models of diabetes[12]
.It won’t be that simple of course. There are a whole range of technological hurdles to overcome, not least the fact that one of the four Yamanaka factors,
One of the problems commercially is that we don’t yet know what the regulatory authorities will demand by way of safety and supporting data before they let iPS cells be used in humans. Currently, licensing iPS cells for therapeutic use would involve two different areas of medical regulation. This is because we would be giving a patient cells (cell therapy) which had been genetically modified (gene therapy). Regulators are wary particularly because so many of the gene therapy trials that were launched with such enthusiasm in the 1980s and 1990s either had little benefit for the patient or sometimes even terrible and unforeseen consequences, including induction of lethal cancers[15]
. The number of potentially costly regulatory hurdles iPS cells will have to get over before they can be given to patients is huge. We might think no investor would put any money into something so potentially risky. Yet invest they do, and that’s because if researchers can get this technology right the return on the investment could be huge.Here’s just one calculation. At a conservative estimate, it costs about $500 per month in the United States to supply insulin and blood sugar monitoring equipment for a diabetic. That’s $6,000 a year, so if a patient lives with diabetes for 40 years that’s $240,000 over their lifetime. Then add in the costs of all the treatments that even well-managed diabetic patients will need for the complications they are likely to suffer because of their illness. It’s fairly easy to see how each patient’s diabetes-related lifetime healthcare costs could be at least a million dollars. And there are at least a million type 1 diabetics in the US alone. This means that at the very least, the US economy spends over a billion dollars every four years, just in treating type 1 diabetes. So even if iPS cells cost a lot to get into the clinic, they have the potential to make an enormous return on investment if they work out cheaper than the lifetime cost of current therapies.
That’s just for diabetes. There are a whole host of other diseases for which iPS cells could provide an answer. Just a few examples include patients with blood clotting disorders, such as haemophilias; Parkinson’s disease; osteo-arthritis and blindness caused by macular degeneration. As science and technology get better at creating artificial structures that can be implanted into our bodies, iPS cells will be used for replacing damaged blood vessels in heart disease, and regenerating tissues destroyed by cancer or its treatment.