Is there an alternative way of investigating transgenerational inheritance? If this phenomenon also occurs in other species, it would give us a lot more confidence that these effects are real. This is because experiments in model systems can be designed to test specific hypotheses, rather than just using the datasets that nature (or history) provides.
This is where we come back to the
Professor Whitelaw decided to investigate if the coat colour could be inherited. If it could, it would show that it’s not only DNA that gets transmitted from parent to offspring, but also epigenetic modifications to the genome. This would provide a potential mechanism for the transgenerational inheritance of acquired characteristics.
When Emma Whitelaw allowed female
If the mother had an unmethylated
By contrast, if the mother’s
Figure 6.2
The coat colour of genetically identical female mice influences the coat colour of their offspring. Yellow female mice, in whom the agouti gene is expressed continuously, due to low levels of DNA methylation of the regulatory retrotransposon, never give birth to dark pups. The epigenetically – rather than genetically – determined characteristics of the mother influence her offspring.Because Emma Whitelaw was working on inbred mice, she was able to perform this experiment multiple times and generate hundreds of genetically identical offspring. This was important, as the more data points we have in an experiment, the more we can rely on the findings. Statistical tests showed that the phenotypic differences between the genetically identical groups were highly significant. In other words, it was very unlikely that the effects occurred by chance[43]
.The results from these experiments showed that an epigenetically-mediated effect (the DNA methylation-dependent coat pattern) in an animal was transmitted to its offspring. But did the mice actually inherit directly an epigenetic modification from their mother?
There was a possibility that the effects seen were not directly caused by inheritance of the epigenetic modification at the