Figure 5.9 shows where this black hole is on the night sky in summer. It is to the lower right of the constellation Sagittarius, the teapot, at the × labeled “Galactic Center.”
A massive black hole inhabits the core of nearly every big galaxy in our universe. Many of these are as heavy as Gargantua (100 million Suns), or even heavier. The heaviest yet measured is 17 billion times more massive than the Sun; it resides at the center of a galaxy whose name is NGC1277, 250 million light-years from Earth—roughly a tenth of the way to the edge of the visible universe.
Inside our own galaxy, there are roughly 100 million smaller black holes: holes that typically are between about three and thirty times as heavy as the Sun. We know this not because we’ve seen evidence for all these, but because astronomers have made a census of heavy stars that will become black holes when they exhaust their nuclear fuel. From that census, astronomers have inferred how many such stars have already exhausted their fuel and become black holes.
So black holes are ubiquitous in our universe. Fortunately, there are none in our solar system. If there were, the hole’s gravity would wreak havoc with the Earth’s orbit. The Earth would be thrown close to the Sun where it boils, or far from the Sun where it freezes, or even out of the solar system or into the black hole. We humans would survive for no more than a year or so!
Astronomers estimate that the nearest black hole to Earth is roughly 300 light-years away: a hundred times farther than the nearest star (other than the Sun), Proxima Centauri.
Now armed with a basic understanding of the universe, fields, warped time and space and especially black holes, we are ready, at last, to explore
II
GARGANTUA
6
Gargantua’s Anatomy
If we know the mass of a black hole and how fast it spins, then from Einstein’s relativistic laws we can deduce all the hole’s other properties: its size, the strength of its gravitational pull, how much its event horizon is stretched outward near the equator by centrifugal forces, the details of the gravitational lensing of objects behind it. Everything.
This is amazing. So different from everyday experience. It is as though knowing my weight and how fast I can run, you could deduce everything about me: the color of my eyes, the length of my nose, my IQ,…
John Wheeler (my mentor, who gave “black holes” their name) has described this by the phrase “A black hole has no hair”—no extra,
From the properties of Miller’s planet, as depicted in
Miller’s planet (which I talk about at length in Chapter 17) is about as close to Gargantua as it can possibly be and still survive. We know this because the crew’s extreme loss of time can only occur very near Gargantua.
At so close a distance, Gargantua’s tidal gravitational forces (Chapter 4) are especially strong. They stretch Miller’s planet toward and away from Gargantua and squeeze the planet’s sides (Figure 6.1).
The strength of this stretch and squeeze is inversely proportional to the square of Gargantua’s mass. Why? The greater Gargantua’s mass, the greater its circumference, and therefore the more similar Gargantua’s gravitational forces are on the various parts of the planet, which results in weaker tidal forces. (See Newton’s viewpoint on tidal forces; Figure 4.8.) Working through the details, I conclude that Gargantua’s mass must be at least 100 million times bigger than the Sun’s mass. If Gargantua were less massive than that, it would tear Miller’s planet apart!