Despite the small deflections,
By contrast with these weak slingshots in the solar system, Gargantua’s intense gravity can grab even objects moving at ultrahigh speeds and throw them around on strongly bent slingshots. Even a light ray. This produces gravitational lensing, the key to seeing Gargantua.
8
Imaging Gargantua
Black holes emit no light, so the only way to see Gargantua is by its influence on light from other objects. In
Gargantua casts a black shadow on the field of stars and it also deflects the light rays from each star, distorting the stellar pattern that the camera sees. This distortion is the gravitational lensing discussed in Chapter 3.
Figure 8.1 shows a rapidly spinning black hole (let’s call it Gargantua) in front of a field of stars, as it would appear to you if you were in Gargantua’s equatorial plane. Gargantua’s shadow is the totally black region. Immediately outside the shadow’s edge is a very thin ring of starlight called the “ring of fire” that I intensified by hand to make the edge of the shadow more distinct. Outside that ring we see a dense sprinkling of stars with a pattern of concentric shells, a pattern produced by the gravitational lensing.
As the camera orbits around Gargantua, the field of stars appears to move. This motion combined with the lensing produces dramatically changing patterns of light. The stars stream at high speed in some regions, they float gently in others, and they’re frozen in still other regions; see the film clip on this book’s page at Interstellar.withgoogle.com.
In this chapter I explain all these features, beginning with the shadow and its ring of fire. Then I describe how the black-hole images in
When imaging Gargantua in this chapter, I treat it as a fast-spinning black hole, as it must be to produce the extreme loss of time that the
Warning: The explanations in the following three sections may require a lot of thought; you can skip them without losing pace with the rest of the book. Not to worry!
The shell of fire (Chapter 6) plays a key role in producing Gargantua’s shadow and the thin ring of fire alongside it. The shell of fire is the purple region surrounding Gargantua in Figure 8.2, and it contains nearly trapped photon orbits (light rays) such as the one in the upper right inset.[20]