The birds that manage to survive on islands, as Charles Darwin momentously observed among finches in the Galápagos, can adapt so tightly to local conditions that they become species unto themselves, found nowhere else. Those conditions explode, however, once humans arrive with their pigs, goats, dogs, cats, and rats.
In Hawaii, all the roast feral pig devoured in luaus can’t keep up with the mayhem their rooting wreaks on forests and bogs. To protect exotic sugarcane from being eaten by exotic rats, in 1883 Hawaiian growers imported the exotic mongoose. Today, rats are still around: the favorite food of both the rat and the mongoose is the eggs of the few native geese and nesting albatrosses left on Hawaii’s main islands. In Guam, just after World War II, a U.S. transport plane landed bearing stowaway Australian brown tree snakes in its wheel-wells. Within three decades, along with several native lizards, more than half the island’s bird species were extinct, and the rest designated uncommon or rare.
When we humans become extinct ourselves, part of our legacy will live on in the predators we introduced. For most, the only constraints on their rampant proliferation have been the eradication programs with which we’ve tried to undo our damage. When we go, those efforts go with us, and rodents and mongooses will inherit most of the South Pacific’s lovely isles.
Although albatrosses spend most of their lives on their majestic wings, they still must land in order to breed. Whether they will still have enough safe places to do so is uncertain, whether we’re gone or not.
CHAPTER 15
Hot Legacy
1. The Stakes
AS BEFITS A chain reaction, it happened very fast. In 1938, a physicist named Enrico Fermi went from Fascist Italy to Stockholm to accept the Nobel Prize for his work with neutrons and atomic nuclei—and kept going, defecting with his Jewish wife to the United States.
That same year, word leaked that two German chemists had split uranium atoms by bombarding them with neutrons. Their work confirmed Fermi’s own experiments. He had guessed correctly that when neutrons cracked an atomic nucleus, they would set more neutrons free. Each would scatter like a subatomic shotgun pellet, and with enough uranium handy, they would find more nuclei to destroy. The process would cascade, and a lot of energy would be released. He suspected Nazi Germany would be interested in that.
On December 2, 1942, in a squash court beneath the stadium at the University of Chicago, Fermi and his new American colleagues produced a controlled nuclear chain reaction. Their primitive reactor was a beehive-shaped pile of graphite bricks laced with uranium. By inserting rods coated with cadmium, which absorbs neutrons, they could moderate the exponential shattering of uranium atoms to keep it from getting out of hand.
Less than three years later, in the New Mexico desert, they did just the opposite. The nuclear reaction this time was intended to go completely out of control. Immense energy was released, and within a month the act was repeated twice, over two Japanese cities. More than 100,000 people died instantly, and the dying continued long after the initial blast. Ever since, the human race has been simultaneously terrified and fascinated by the double deadliness of nuclear fission: fantastic destruction followed by slow torture.
If we left this world tomorrow—assuming by some means other than blowing ourselves to bits—we would leave behind about 30,000 intact nuclear warheads. The chance of any exploding with us gone is effectively zero. The fissionable material inside a basic uranium bomb is separated into chunks that, to achieve the critical mass necessary for detonation, must be slammed together with a speed and precision that don’t occur in nature. Dropping them, striking them, plunging them in water, or rolling a boulder over them would do nothing. In the tiny chance that the polished surfaces of enriched uranium in a deteriorated bomb actually met, unless forced together at gunshot speed, they would fizzle—albeit in a very messy way.