Читаем Тёмная миссия. Секретная история NASA полностью

В гиперпространственной модели физики это простое, но в то же время обладающее большой энергией взаимоотношение, вероятно, является эквивалентом формулы Е=МС: общая внутренняя светимость небесного объекта, вероятно, зависит от только одного физического параметра: светимость равняется общему системному вращательному моменту (объекта плюс все спутники). Это означает, что количество энергии, которое излучает данный объект, определяется силой, прилагаемой к нему через гиперпространство, а эта гиперпространственная энергия в нашем трехмерном мире измеряется как вращательный момент. Графически вся эта зависимость выглядит вполне очевидной. Все планеты на графике ведут себя правильно, за исключением Солнца. Создается впечатление, что оно каким- то образом теряет значительную часть своего вращательного момента.

Принято считать, что Солнце и все похожие на него звезды — это огромные ядерные печи, топливо для которых создается распадом материи на шаровые молнии энергии. Этот процесс обеспечивает синтез атомов внутри Солнца. Следовательно, он должен создавать побочные продукты. Одним из таких побочных продуктов синтеза является нейтрино, субатомные частицы, не имеющие электрического заряда. Однако эксперименты по измерению потока нейтрино от Солнца показали, что Солнце не излучает того количества нейтрино, которое должно было бы излучать пропорционально излучаемой энергии в соответствии с обычной моделью. Если энергия Солнца вырабатывается в результате «термоядерной реакции» (в соответствии со стандартной моделью), то регистрируемый «дефицит нейтрино» составляет до 60%. Еще более удивительно, что некоторые типы первичных нейтрино (которых подсчитывают для того, чтобы объяснить основной объем реакций синтеза внутри Солнца, основываясь на лабораторных экспериментах) просто отсутствуют.

Теоретические поправки последнего времени к существующей квантовой теории в совокупности с данными новых нейтрино–детекторов должны, вероятно, вновь изменить данные по наблюдаемому количеству нейтрино (и «разновидностям») и таким образом привести наблюдаемый «нейтрино–дефицит» Солнца в соответствие с исправленной теорией. У нас, однако, есть подозрение, что такие сомнительные манипуляции с оригинальной стандартной нейтринно–солнечной моделью — созданной, что примечательно, до того, как аномальный солнечный нейтрино–дефицит был открыт при помощи наблюдений — является своего рода «академическим шулерством»…

По иронии, объяснение очевидного отклонения Солнца от стандартной модели содержится в удивительном отклонении его кривой на нашем графике вращательного момента/светимости.

В гиперпространственной модели первичный источник энергии Солнца, как и планет, должен зависеть от общего вращательного момента — собственного «спина» плюс общий вращательный момент планетарных масс на орбите. Как упоминалось выше, несмотря на то, что Солнце обладает 98% массы Солнечной системы, оно имеет всего 2% общего вращательного момента. Все остальное принадлежит планетам. Таким образом, если гиперпространственная модель верна, прибавляя момент их части к вращательному моменту Солнца, мы должны увидеть, что на графике Солнце должно следовать той же линии, что и планеты, от Земли до Нептуна. Однако это не так.

Самое очевидное объяснение этой дилеммы — это то, что гиперпространственная модель просто ошибочна. Менее очевидная версия — мы что- то упустили, например, дополнительные планеты.

Пытаясь объяснить недостающий вращательный момент, Хогленд нашел первый доказуемый прогноз гиперпространственной модели. Если поставить еще одну большую планету (или пару планет поменьше) за Плутон (расстояние, несколько большее, чем от Земли до Солнца), общий вращательный момент Солнца войдет в график до конечного пересечения с линией (в процентном отношении — около 30% от внутренней энергии, которая должна производиться реальной термоядерной реакцией). Это дает отдельный повод предположить, что современное руководство по расчетам вращательного момента Солнца является неполным по одной очевидной причине: мы еще не обнаружили все основные планеты Солнечной системы.

Поэтому первым прогнозом гиперпространственной модели стало то, что в конце концов при помощи наблюдений будет найдена либо одна большая, либо две маленьких планеты Солнечной системы, обращающихся в одном направлении. В обоих случаях эти наблюдения в определенных границах позволят Солнцу занять его предсказанное положение на графике и подтвердят взаимосвязь между вырабатываемой энергией и вращательным моментом. Связь между вращательным моментом и вырабатываемой энергией имеет и еще один, более широкий смысл. Если она действительно существует, это означает, что представления об иерархии Солнечной системы не соответствуют реальности. В гиперпространственной модели хвост (планеты и луны) машет собакой (Солнцем) - предположение, которое имеет далеко идущие последствия.

Подтверждение?

Перейти на страницу:

Похожие книги

«Ваше сердце под прицелом…» Из истории службы российских военных агентов
«Ваше сердце под прицелом…» Из истории службы российских военных агентов

За двести долгих лет их называли по-разному — военными агентами, корреспондентами, атташе. В начале XIX века в «корпусе военных дипломатов» были губернаторы, министры, руководители Генерального штаба, командующие округами и флотами, известные военачальники. Но в большинстве своем в русской, а позже и в советской армиях на военно-дипломатическую работу старались отбирать наиболее образованных, порядочных, опытных офицеров, имеющих богатый жизненный и профессиональный опыт. Среди них было много заслуженных командиров — фронтовиков, удостоенных высоких наград. Так случилось после Русско-японской войны 1904–1905 годов. И после Великой Отечественной войны 1941–1945 годов на работу в зарубежные страны отправилось немало Героев Советского Союза, офицеров, награжденных орденами и медалями. Этим людям, их нередко героической деятельности посвящена книга.

Михаил Ефимович Болтунов

Документальная литература / Публицистика / Документальное
Расшифрованный Булгаков. Тайны «Мастера и Маргариты»
Расшифрованный Булгаков. Тайны «Мастера и Маргариты»

Когда казнили Иешуа Га-Ноцри в романе Булгакова? А когда происходит действие московских сцен «Мастера и Маргариты»? Оказывается, все расписано писателем до года, дня и часа. Прототипом каких героев романа послужили Ленин, Сталин, Бухарин? Кто из современных Булгакову писателей запечатлен на страницах романа, и как отражены в тексте факты булгаковской биографии Понтия Пилата? Как преломилась в романе история раннего христианства и масонства? Почему погиб Михаил Александрович Берлиоз? Как отразились в структуре романа идеи русских религиозных философов начала XX века? И наконец, как воздействует на нас заключенная в произведении магия цифр?Ответы на эти и другие вопросы читатель найдет в новой книге известного исследователя творчества Михаила Булгакова, доктора филологических наук Бориса Соколова.

Борис Вадимович Соколов , Борис Вадимосич Соколов

Документальная литература / Критика / Литературоведение / Образование и наука / Документальное
Повседневная жизнь петербургской сыскной полиции
Повседневная жизнь петербургской сыскной полиции

«Мы – Николай Свечин, Валерий Введенский и Иван Погонин – авторы исторических детективов. Наши литературные герои расследуют преступления в Российской империи в конце XIX – начале XX века. И хотя по историческим меркам с тех пор прошло не так уж много времени, в жизни и быте людей, их психологии, поведении и представлениях произошли колоссальные изменения. И чтобы описать ту эпоху, не краснея потом перед знающими людьми, мы, прежде чем сесть за очередной рассказ или роман, изучаем источники: мемуары и дневники, газеты и журналы, справочники и отчеты, научные работы тех лет и беллетристику, архивные документы. Однако далеко не все известные нам сведения можно «упаковать» в формат беллетристического произведения. Поэтому до поры до времени множество интересных фактов оставалось в наших записных книжках. А потом появилась идея написать эту книгу: рассказать об истории Петербургской сыскной полиции, о том, как искали в прежние времена преступников в столице, о судьбах царских сыщиков и раскрытых ими делах…»

Валерий Владимирович Введенский , Иван Погонин , Николай Свечин

Документальная литература / Документальное