Читаем Том 1. Механика, излучение и теплота полностью

Что означает отрицательная энергия? А то, что, когда электрон находится в атоме, у него энергии меньше, чем когда он свободен. Иначе говоря, в атоме он связан. И нужна энергия, чтобы вырвать его из атома; для ионизации атома водорода требуется энергия 13,6 эв. Не исключено, конечно, что потребуется вдвое или втрое больше энергии, или в π раз меньше, так как расчет наш был очень неряшлив. Однако мы схитрили и выбрали все константы так, чтобы итог получился абсолютно правильным! Эта величина -13,6 эв — называется ридбергом энергии; это энергия ионизации водорода.

Только теперь становится понятным, отчего мы не проваливаемся сквозь пол. При ходьбе вся масса атомов наших ботинок отталкивается от пола, от всей массы его атомов. Атомы сминаются, электроны вынуждены тесниться в меньшем объеме, и по принципу неопределенности их импульсы в среднем увеличиваются, а увеличение импульсов означает рост энергии. Сопротивление атомов сжатию — это не классический, а квантовомеханический эффект. По классическим понятиям следовало ожидать, что при сближении электронов с протонами энергия уменьшится; наивыгоднейшее расположение положительных и отрицательных зарядов в классической физике — это когда они сидят верхом друг на друге. Классической физике это было хорошо известно и представляло загадку: атомы-то все же существовали! Конечно, ученые и тогда придумывали разные способы выхода из тупика, но правильный (будем надеяться!) способ стал известен только нам!

Кстати, когда вокруг ядра бывает много электронов, то они тоже стараются держаться подальше друг от друга. Причина этого пока вам непонятна, но это факт, что если какой-то электрон занял какое-то место, то другой этого места уже не займет. Точнее, из-за существования двух направлений спина, эти электроны могут усесться друг на друга и вертеться: один — в одну сторону, другой — в другую. Но уже никакого третьего на это место вам не поместить. Вы должны их помещать на новые места, и в этом-то истинная причина того, что вещество обладает упругостью. Если бы можно было помещать все электроны в одно место, вещество было бы даже плотней, чем обычно. И именно благодаря тому, что электроны не могут сидеть друг на друге, существуют и столы, и другие твердые предметы.

Естественно поэтому, что, желая понять свойства вещества, нужно пользоваться квантовой механикой; классической для этого явно недостаточно.

§ 5. Уровни энергии

Мы говорили уже об атоме в наинизшем возможном энергетическом состоянии. Но оказывается, что электрон способен и на многое другое. Он может вращаться и колебаться гораздо энергичней, возможности его движений в атоме довольно многообразны. Согласно квантовой механике, при установившихся условиях движения атом может обладать только вполне определенными энергиями. На диаграмме фиг. 38.9 мы будем откладывать энергии по вертикали, а горизонтальными линиями отмечать разрешенные значения энергии. Когда электрон свободен, т. е. когда его энергия положительна, она может быть любой; скорость электрона тоже может быть какой угодно. Но энергии связанных состояний не произвольны. Атом может иметь только ту или иную энергию из дозволенной совокупности значений, скажем, таких, как на фиг. 38.9.

Фиг. 38.9. Схема энергий атома. Показано несколько возможных переходов.


Обозначим эти разрешенные значения через Е0, E1, E2, Е3. Если первоначально атом находится в одном из этих «возбужденных» состояний E1, E2 и т. д., он не останется в нем навсегда. Раньше или позже он упадет в низшее состояние и излучит при этом энергию в виде света. Частота испущенного света определяется требованием сохранения энергии плюс квантовомеханическим пониманием того, что частота света связана с энергией света условием (38.1).

Поэтому, например, частота света, освобожденного в переходе от энергии Е3 к энергии E1, равна

(38.14)

Эта частота характерна для данного сорта атомов и определяет линию в спектре испускания. Возможен и другой переход — от E3 к Е0. У него своя частота:

(38.15)

Еще одна возможность заключается в том, что если атом возбужден до состояния E1, то он может упасть в основное состояние E0, излучая фотон с частотой

(38.16)

Мы привели здесь эти три перехода для того, чтобы подчеркнуть интересную связь между ними. Из трех формул (38.14), (38.15), (38.16) легко получить

(38.17)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука