Читаем Том 1. Механика, излучение и теплота полностью

Если температура очень высока, так что kT≫|V(r0)|, то экспонента почти всюду мала, и вероятность найти молекулу в том или ином месте почти не зависит от расстояния до других молекул. Рассмотрим случай двух молекул; в этом случае ехр (—п.э./kT) будет вероятностью найти молекулы на расстоянии r друг от друга. Ясно, что вероятность максимальна тогда, когда потенциал наиболее отрицателен, а когда потенциал стремится к бесконечности, вероятность почти равна нулю (это происходит на очень малых расстояниях). Это означает, что у атомов газа нет шансов столкнуться друг с другом, уж очень сильно они отталкиваются. Но очень велики шансы найти эти молекулы (если отнести вероятность к единичному объему) вблизи точки r0. Здесь вероятность больше, чем в других точках, но насколько больше — это зависит от температуры. Если температура очень велика по сравнению с разностью энергий в точках r=r0 и r=∞, то экспонента всегда почти равна единице. Это случай, когда средняя кинетическая энергия (она порядка kT) значительно превосходит потенциальную энергию. Силы тогда мало что значат. Но с падением температуры вероятность найти молекулы на расстоянии, близком к r0, резко возрастает по сравнению с вероятностью найти молекулы в любом другом месте; и в самом деле, если kT много меньше |V(r0)|, то около r0 экспонента имеет довольно большой положительный показатель. Другими словами, при заданном объеме молекулы предпочитают быть на расстоянии минимальной энергии, а не очень далеко друг от друга. По мере падения температуры атомы сближаются, сбиваются в кучу, объединяются в жидкости, в твердые тела и молекулы, а если их подогреть, то они испаряются.

Если бывает необходимо точно описать, как происходит испарение, или вообще уточнить, как молекулы ведут себя в данных обстоятельствах, то поступать следует так. Прежде всего нужно как можно точнее узнать закон взаимодействия молекул V(r). Как это сделать — безразлично: можно вычислить потенциал с помощью квантовой механики или установить закон взаимодействия экспериментально. Но если даже закон взаимодействия молекул известен, нужно все же учесть, что дело идет о миллионах молекул и нам еще придется хватить горя при изучении функции ехр(—∑Vij/kT). Все же удивительно, что функция так проста и все как будто ясно, поскольку известен точный потенциал взаимодействия, а дело это оказывается невероятно сложным: трудность заключается в ужасающе большом числе переменных.

Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.

Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.

§ 4. Распределение молекул по скоростям

Обсудим теперь распределение молекул по скоростям, потому что интересно, а иногда и полезно знать, какая часть молекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энергию силы тяжести. Если бы между атомами существовали взаимные силы, то нам, конечно, пришлось бы написать что-нибудь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправдание. Мы видим, что на высоте h находится гораздо меньше молекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.

Фиг. 40.4. Высоты h достигают только те молекулы, скорость которых на высоте h=0 достаточно велика.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука