Читаем Том 1. Механика, излучение и теплота полностью

Последняя фаза очень важна. Предположим, что в запаянном контейнере находится сжатый воздух при постоянной температуре; мы позволили ему расшириться. Такое устройство может совершать работу; оно может привести в движение пневматический молоток. При расширении, например, воздух чуть-чуть охлаждается, но если в нашем распоряжении очень большое море, огромный тепловой резервуар, то мы снова сможем нагреть его. Итак, мы взяли из моря (резервуара) тепло и произвели работу при помощи сжатого воздуха. Однако Карно не ошибся. Ведь мы не сумели оставить все в системе без изменения. Чтобы сжать снова воздух, которому мы позволили расшириться, нам понадобится произвести дополнительную работу. Покончив с этим, мы обнаружим, что не только не смогли заставить систему работать при заданной температуре Т, но еще и сами вложили некую работу. Мы должны говорить только о таких случаях, когда полный результат всего процесса сводится к изъятию тепла и превращению его в работу, точно так же, как при преодолении трения конечный результат есть превращение работы в тепло. Если процесс сводится к движению по окружности, то систему можно вернуть точно в исходное положение, но конечным результатом этого процесса будет переход в тепло затраченной на преодоление трения работы. А можно ли обратить этот процесс? Повернуть, скажем, какую-нибудь ручку, чтобы все повернулось вспять, трение производило полезную работу, а моря остыли? Карно сказал, что этого не может быть. Давайте и мы предположим, что это невозможно.

Если бы это стало вдруг возможным, то это означало бы, что, помимо многих других полезных вещей, мы смогли бы, например, без всяких затрат отнять тепло у холодного тела и отдать его горячему. Между тем каждый знает, что тепло переходит от горячего тела к холодному.

Если мы просто приложим нагретое тело к холодному и больше ничего делать не будем, то, насколько известно, горячее тело никогда не станет горячее, а холодное — холоднее! Но если бы мы смогли произвести работу, отобрав тепло, скажем, у океана или от чего-нибудь еще, не изменив его температуры, то эту работу можно было бы, призвав на помощь трение, снова превратить в тепло, но уже при другой температуре. Например, второе плечо нашей воображаемой машины может тереться обо что-то, что и так уже нагрелось. Полный результат процесса в этом случае сводится к охлаждению «холодного» тела, в нашем случае океана, и нагреванию горячих трущихся частей машины. Гипотезу Карно, второй закон термодинамики, иногда формулируют так: тепло не может перетечь само собой от холодного тела к горячему. Но мы только что убедились в эквивалентности этих утверждений. Повторим их снова. Первое: нельзя осуществить процесс, единственным результатом которого является превращение тепла в работу при постоянной температуре. Второе: тепло не может перетечь само собой от холодного тела к горячему. Мы будем чаще пользоваться первой формулировкой.

Анализ работы тепловой машины, проделанный Карно, весьма похож на то, что мы делали в гл. 4 (вып. 1), когда изучали подъемные машины и рассуждали о законе сохранения энергии. Более того, приведенные там аргументы подсказаны аргументами Карно о работе тепловых машин. Поэтому некоторые рассуждения в этой главе покажутся вам уже знакомыми.

Предположим, что «котел» построенной нами тепловой машины поддерживается при температуре Т1. За счет отнятого у котла тепла Q1 пар совершил работу W и выделил в «конденсоре» тепло Q2 [температура конденсора равна Т2 (фиг. 44.3)].

Фиг. 44.3. Схема тепловой машины.


Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q2 равно Q1 потому что не верил этому. Многие считали, что Q1 и Q2 одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выделенное тепло Q2 равно теплу Q1 за вычетом совершенной работы:

(44.3)

(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q1 и производилась бы работа W.)

А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T1. В конденсоре будет поддерживаться та же температура Т2. Мы используем то же тепло Q1 из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.

§ 3. Обратимые машины

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука