совершается за счет энергии Q
1, полученной из резервуара. Во время расширения pV=NkT1 или
значит,
(44.4)
т. е.
Вот то тепло, которое взято из резервуара при температуре Т
1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2: (44.5)
Чтобы закончить анализ, нужно еще найти соотношение между V
c/Vd и Vb/Va. Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVγ остается постоянным. Поскольку pV=NkT, то формулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vγ-1=const, или TVγ-1=const, т. е. (44.6)
Так как кривая 4 описывает адиабатическое сжатие от d
до а, то (44.6а)
Если поделить эти равенства одно на другое, то мы выясним, что отношения V
b/Va и Vc/Vd равны, поэтому равны и логарифмы в (44.4) и (44.5). Значит, (44.7)
Это и есть то соотношение, которое мы искали. Хотя оно доказано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины
.А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интересуясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т
1, Т2 и Т3. Одна машина поглощает тепло Q1 при температуре T1, производит работу W13 и отдает тепло Q3 при температуре T3 (фиг. 44.8).
Фиг. 44.8. Спаренные машины 1 и 2 эквивалентны машине 3.
Другая машина работает при перепаде температур T
2 и Т3. Предположим, что эта машина устроена так, что она поглощает то же тепло Q3 при температуре Т3 и отдает тепло Q2. Тогда нам придется затратить работу W32, ведь мы заставили машину работать в обратном направлении. Цикл первой машины заключается в поглощении тепла Q1 и выделении тепла Q3 при температуре Т3. Вторая машина в это время забирает из резервуара то же самое тепло Q3 при температуре T3 и отдает его в резервуар с температурой Т2. Таким образом, чистый результат цикла этих спаренных машин состоит в изъятии тепла Q1 при температуре Т1 и выделении тепла Q2 при температуре T2. Эти машины эквивалентны третьей, которая поглощает тепло Q1 при температуре Т1, совершает работу W12 и выделяет тепло Q2 при температуре Т2. Действительно, исходя из первого закона, можно сразу же показать, что W12=W13-W32: (44.8)
Теперь можно получить закон, связывающий коэффициенты полезного действия машин. Ведь ясно, что между эффективностями машин, работающих при перепаде температур Т
2-T3, T2-Т3 и Т1-Т2, должны существовать определенные соотношения.