Весьма существенно и другое свойство храповика и собачки (на рисунке его нельзя показать). Предположим, что части нашего устройства идеально упруги. Когда собачка пройдет через конец зубца и сработает пружинка, собачка ударится о колесико и начнет подпрыгивать. Если в это время произойдет очередная флуктуация, вертушка может повернуться и в другую сторону, так как зубец может проскользнуть под собачкой, когда та приподнята! Значит, для необратимости вертушки важно, чтобы было устройство, способное гасить прыжки собачки. Но при этом гашении энергия собачки перейдет к храповику и примет вид тепловой энергии. Выходит, что по мере вращения храповик будет все сильнее нагреваться. Для простоты пусть газ вокруг храповика уносит часть тепла. Во всяком случае, вместе с храповиком начнет нагреваться и сам газ. И что же, так будет продолжаться вечно? Нет! Собачка и храповик, сами обладая некоторой температурой
Вот отчего наш механизм не будет находиться в вечном движении. Иногда от щелчков по крыльям вертушки собачка поднимается и вертушка поворачивается. Но иногда, когда вертушка стремится повернуть назад, собачка оказывается уже приподнятой (из-за флуктуации движений этого конца оси) и храповик действительно поворачивает обратно. В итоге—чистый нуль. И совсем нетрудно показать, что, когда температура в обоих сосудах одинакова, в среднем вращения не будет. Будет, конечно, множество поворотов в ту или иную сторону, но чего мы хотим — одностороннего вращения,— тому не бывать.
Рассмотрим причину этого. Чтобы поднять собачку до верха зубца, надо проделать работу против натяжения пружинки. Назовем эту работу ε; пусть θ — угол между зубцами. Шанс, что система накопит достаточно энергии ε, чтобы поднять собачку до края зубца, есть ехр(-ε/
§ 2. Храповик как машина
Пойдем дальше. Рассмотрим другой пример: температура вертушки T1
, а температура храповикаПосмотрим-ка, удастся ли нам теперь поднимать грузы. Привяжем к барабану нить и привесим к ней грузик вроде нашей блошки. Пусть L будет момент, создаваемый грузом. Если момент L не очень велик, наша машина груз поднимет, так как из-за броуновских флуктуации повороты в одну сторону вероятнее, чем в другую. Определим, какой вес мы сможем поднять, как быстро он будет подниматься и т. д.
Сперва рассмотрим движение вперед, для которого храповик и предназначен. Сколько энергии нужно занять у вертушки, чтобы продвинуться на шаг? Чтобы поднять собачку, нужна энергия ε. Чтобы повернуть храповик на угол θ против момента L, нужна энергия Lθ. Всего нужно занять энергию ε+Lθ. Вероятность заполучить ее равна ехр[-(ε+Lθ)/kT1
]. В действительности дело не только в самой этой энергии, но и в том, сколько, раз в секунду она окажется в нашем распоряжении. Вероятность в секунду только пропорциональна ехр[-(ε+Lθ)/kT1]; обозначим коэффициент пропорциональности 1/τ (он в конце выкладок выпадет). После каждого шага вперед совершенная над грузом работа есть