Читаем Том 1. Механика, излучение и теплота полностью

Весьма существенно и другое свойство храповика и собачки (на рисунке его нельзя показать). Предположим, что части нашего устройства идеально упруги. Когда собачка пройдет через конец зубца и сработает пружинка, собачка ударится о колесико и начнет подпрыгивать. Если в это время произойдет очередная флуктуация, вертушка может повернуться и в другую сторону, так как зубец может проскользнуть под собачкой, когда та приподнята! Значит, для необратимости вертушки важно, чтобы было устройство, способное гасить прыжки собачки. Но при этом гашении энергия собачки перейдет к храповику и примет вид тепловой энергии. Выходит, что по мере вращения храповик будет все сильнее нагреваться. Для простоты пусть газ вокруг храповика уносит часть тепла. Во всяком случае, вместе с храповиком начнет нагреваться и сам газ. И что же, так будет продолжаться вечно? Нет! Собачка и храповик, сами обладая некоторой температурой Т, подвержены также и броуновскому движению. Это значит, что время от времени собачка случайно поднимается и проходит мимо зубца как раз в тот момент, когда броуновское движение вертушки пытается повернуть ее назад. И чем горячее предмет, тем чаще это бывает.

Вот отчего наш механизм не будет находиться в вечном движении. Иногда от щелчков по крыльям вертушки собачка поднимается и вертушка поворачивается. Но иногда, когда вертушка стремится повернуть назад, собачка оказывается уже приподнятой (из-за флуктуации движений этого конца оси) и храповик действительно поворачивает обратно. В итоге—чистый нуль. И совсем нетрудно показать, что, когда температура в обоих сосудах одинакова, в среднем вращения не будет. Будет, конечно, множество поворотов в ту или иную сторону, но чего мы хотим — одностороннего вращения,— тому не бывать.

Рассмотрим причину этого. Чтобы поднять собачку до верха зубца, надо проделать работу против натяжения пружинки. Назовем эту работу ε; пусть θ — угол между зубцами. Шанс, что система накопит достаточно энергии ε, чтобы поднять собачку до края зубца, есть ехр(-ε/kT). Но вероятность того, что собачка поднимется случайно, тоже есть ехр(-ε/kT). Значит, сколько раз собачка случайно поднимется, давая храповику свободно повернуться назад, столько же раз окажется достаточно энергии, чтобы при прижатой собачке вертушка повернулась вперед. Выйдет равновесие, а не вращение.

§ 2. Храповик как машина

Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик холодный и флуктуации собачки сравнительно редки, ей теперь очень трудно раздобыть энергию ε. Но из-за того, что вертушка горячая, она часто получает энергию ε, и наше устройство начнет, как и задумано, вертеться в одну сторону.

Посмотрим-ка, удастся ли нам теперь поднимать грузы. Привяжем к барабану нить и привесим к ней грузик вроде нашей блошки. Пусть L будет момент, создаваемый грузом. Если момент L не очень велик, наша машина груз поднимет, так как из-за броуновских флуктуации повороты в одну сторону вероятнее, чем в другую. Определим, какой вес мы сможем поднять, как быстро он будет подниматься и т. д.

Сперва рассмотрим движение вперед, для которого храповик и предназначен. Сколько энергии нужно занять у вертушки, чтобы продвинуться на шаг? Чтобы поднять собачку, нужна энергия ε. Чтобы повернуть храповик на угол θ против момента L, нужна энергия Lθ. Всего нужно занять энергию ε+Lθ. Вероятность заполучить ее равна ехр[-(ε+Lθ)/kT1]. В действительности дело не только в самой этой энергии, но и в том, сколько, раз в секунду она окажется в нашем распоряжении. Вероятность в секунду только пропорциональна ехр[-(ε+Lθ)/kT1]; обозначим коэффициент пропорциональности 1/τ (он в конце выкладок выпадет). После каждого шага вперед совершенная над грузом работа есть Lθ. Энергия, взятая у вертушки, равна ε+Lθ. Энергией ε наматывается нить, затем следует: щелк, щелк, клингенкланггеклунген..., и энергия переходит в тепло. Вся одолженная энергия идет на то, чтобы поднять блошку и собачку, которая потом падает и отдает тепло другой стороне (храповику).

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука