Читаем Том 1. Механика, излучение и теплота полностью

Очень интересно определить скорость таких волн. Это должно быть какой-то комбинацией плотности воды, ускорения силы тяжести, которая в данном случае является восстанавливающей силой, и, возможно, длины волны и глубины. Если мы рассмотрим случай бесконечной глубины, то скорость больше не будет зависеть от нее. Но какую бы формулу для фазовой скорости волн мы ни взяли, она должна содержать эти величины в такой комбинации, чтобы давать правильную размерность. Испробовав множество различных способов, мы найдем, что только одна комбинация g и λ может дать нам размерность скорости, именно √(gλ), которая совсем не включает плотности. На самом деле эта формула для фазовой скорости не вполне точна, и полный анализ динамики, в который мы не будем входить, показывает, что все действительно получится так, как у нас, за исключением √(2π), т. е.

Интересно, что длинные волны бегут быстрее коротких. Так что когда проходящая вдали моторная лодка создает волны, то после некоторого промежутка времени они достигнут берега, но сначала это будут редкие всплески, поскольку первыми приходят длинные волны. Затем приходящие волны становятся все короче и короче, ибо скорость падает как квадратный корень из длины волны.

«Это же неверно,— может возразить кто-нибудь,— ведь чтобы делать такое утверждение, мы должны смотреть на групповую скорость». Правильно, конечно. Формула для фазовой скорости не говорит нам о том, что приходит первым; об этом может нам сказать только групповая скорость. Так что мы должны получить групповую скорость и мы сможем показать, что она равна половине фазовой скорости. Для этого нужно только вспомнить, что фазовая скорость ведет себя как квадратный корень из длины волны. Так же, т. е. как квадратный корень из длины волны, ведет себя и групповая скорость. Но как может групповая скорость быть вдвое меньше фазовой? Посмотрите на группу волн, вызванных проходящей мимо лодкой, и проследите за каким-то определенным гребнем. Вы обнаружите, что он бежит вместе с группой, но постепенно становится все меньше и меньше, а дойдя до переднего фронта, совсем умирает. Но таинственным и непостижимым образом на смену ему с заднего фронта поднимается слабенькая волна и становится она все сильнее и сильнее. Короче говоря, по группе движутся волны, тогда как сама группа движется вдвое медленнее этих волн.

Поскольку групповая и фазовая скорости не равны друг другу, то волны, вызванные движущимся объектом, будут уже не просто коническими, а гораздо более сложными и интересными. Вы можете видеть это на фиг. 51.10, где показаны волны, вызванные движущейся по воде лодкой.

Фиг. 51.10. След прошедшей моторной лодки.

Заметьте, что они совсем не похожи на то, что мы получали для звука (когда скорость не зависит от длины волны), где фронт волны был просто распространяющимся в стороны конусом. Вместо него мы получили волны позади движущегося объекта, фронт которых перпендикулярен его движению, да еще движущиеся под другими углами небольшие волны с боков. Всю эту картину движения волн в целом можно очень красиво воссоздать, зная только, что фазовая скорость пропорциональна квадратному корню из длины волны. Весь фокус заключается в том, что картина волн стационарна относительно лодки (движущейся с постоянной скоростью); все другие виды волн отстанут от нее.

До сих пор мы рассматривали длинные волны, для которых восстанавливающей силой была сила тяжести. Но когда волны становятся очень короткими, то основной восстанавливающей силой оказывается капиллярное притяжение, т. е. энергия поверхностного натяжения. Для волн поверхностного натяжения фазовая скорость равна

где Т — поверхностное натяжение, а ρ — плотность. Здесь все наоборот: чем короче длина волн, тем большей оказывается фазовая скорость. Если же действуют и сила тяжести и капиллярная сила, как это обычно бывает, то мы получаем комбинацию

где k=2π/λ — волновое число. Как видите, скорость волн на воде — вещь действительно довольно сложная. На фиг. 51.11 показана фазовая скорость как функция длины волны.

Фиг. 51.11. График зависимости фазовой скорости от длины волны для воды.

Она велика для очень коротких волн, велика для очень длинных волн, но между ними существует некоторая минимальная скорость распространения. Исходя из этой формулы, можно вычислить и групповую скорость: она оказывается равной 3/2 фазовой скорости для ряби и 1/2 фазовой скорости для волн «тяжести». Слева от минимума групповая скорость больше фазовой, а справа групповая скорость меньше. С этим фактом связано несколько интересных явлений. Поскольку групповая скорость с уменьшением длины волны быстро увеличивается, то, если мы создадим какие-то возмущения, возникнут волны соответствующей длины, которые идут с минимальной скоростью, а впереди них с большей скоростью побегут короткие и очень длинные волны. В любом водоеме можно легко увидеть очень короткие волны, а вот длинные волны наблюдать труднее.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука