Читаем Том 1. Механика, излучение и теплота полностью

Для правосторонних молекул не существует закона сохранения их числа. Жизнь может только увеличивать его. Предположение, таким образом, состоит в том, что жизненные явления говорят нам не об отсутствии симметрии физических законов, а, наоборот, об универсальности природы и общности начала всех живых созданий на Земле в описанном выше смысле.

<p><strong>§ 5. Полярный и аксиальный векторы</strong></p>

Пойдем дальше. Вы видели, что в физике имеется масса примеров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле правой руки, которым необходимо пользоваться, чтобы получить правильный момент количества движения и момент силы, магнитное поле и т. п. Например, сила, действующая на заряд в магнитном поле, равна F=qv×B. Но представьте себе такое положение: пусть мы знаем F, v и В. Как ив этого узнать, где у нас правая сторона? Если вернуться назад и посмотреть, откуда произошли векторы, то увидим, что правило правой руки — просто соглашение, своего рода трюк. В самом начале такие величины, как угловая скорость и момент количества движения и другие, подобные им, в действительности вообще не были настоящими векторами! Все они каким-то образом связаны с определенными плоскостями, и только благодаря тому, что наше пространство трехмерно, эти величины можно связать с направлением, перпендикулярным данной плоскости. Мы же из двух возможных направлений выбрали правое.

Представьте себе, что какой-то озорной чертик, решив подшутить над физиками, пробрался во все лаборатории и всюду заменил слово «правое» на «левое». И в результате, где было написано правило правой руки, мы вынуждены были бы пользоваться правилом левой руки. Ну что ж, физики бы просто не заметили этого, ибо ни к какому изменению в физических законах это бы не привело, разумеется, если физические законы симметричны.

Покажем это на примере. Вы знаете, что существуют два сорта векторов. Имеются обыкновенные, «настоящие» векторы, подобные, например, отрезку расстояния Δr в пространстве. Пусть в нашей аппаратуре что-то находится «здесь», а нечто другое — «там», тогда те же самые «что-то» будут присутствовать и в зеркально отраженной аппаратуре. Если мы в обоих случаях проведем векторы от «сюда» до «туда», то один вектор будет отражением другого (фиг. 52.2), причем направление стрелки вектора точно, как и все пространство, «выворачивается наизнанку».

Фиг. 52.2. Отрезок в пространстве и его зеркальное отражение.

Такие векторы мы называем полярными.

Но второй сорт векторов, связанных с вращением, имеет совсем другую природу. Представьте себе нечто вращающееся в трехмерном пространстве (фиг. 52.3).

Фиг. 52.3. Вращающееся колесо и его зеркальное отражение. Заметьте, что направление «вектора» угловой скорости не изменяется.

Если посмотреть на это в зеркало, то вращение будет происходить так, как показано на рисунке, т. е. как зеркальное изображение первоначального вращения. Условимся теперь представлять зеркальное вращение с помощью того же самого правила. В результате мы получим «вектор», который в отличие от полярного вектора не изменяется при отражении и оказывается перевернутым по отношению к полярному вектору и геометрии всего пространства. Такой вектор мы называем аксиальным.

Если физический закон симметрии относительно отражения правилен, то уравнения должны быть устроены так, чтобы при изменении знака каждого аксиального вектора и каждого векторного произведения (что соответствует отражению) ничего не произошло. Например, когда мы пишем формулу для момента количества движения L=r×p, то здесь все в порядке, потому что при переходе в левую систему координат мы изменяем знак L, а знак р и r не изменяется. Кроме того, изменится и векторное произведение, поскольку мы должны правило правой руки заменить правилом левой руки. Возьмем другой пример.

Известно, что сила, действующая на заряд в магнитном поле, равна F=qv×В, но если мы от правой системы перейдем к левой, то, поскольку, как известно, F и v — полярные векторы, изменение знака из-за наличия векторного произведения должно компенсироваться изменением знака В, а это означает, что В должен быть аксиальным вектором. Другими словами, при таком отражении В должен переходить в —В. Таким образом, если мы изменяем левые координаты на правые, то одновременно нужно северный полюс магнита изменить на южный.

Давайте посмотрим на примере, как это все получается. Пусть у нас имеются два магнита, похожих на изображенные на фиг. 52.4.

Фиг. 52.4. Электромагнит и его зеркальное отражение.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука