Читаем Том 1. Механика, излучение и теплота полностью

Если же, однако, не требовать, чтобы D было в точности равно, скажем, нулю, или единице, или двум, а вместо этого говорить о вероятности получения D где-то вблизи нуля, или единицы, или двух, то при этом мы можем нарисовать график, подобный приведенному на фиг. 6.2. Назовем Р(х, Δx) вероятностью того, что D будет находиться где-то внутри интервала Δx в окрестности величины х (скажем, где-то между х и х+Δx). Если Δx достаточно мало, то вероятность того, что D попадет в этот интервал, должна быть пропорциональна его ширине, т. е. Δx. Поэтому мы можем утверждать, что

(6.17)

Функция р(х) называется плотностью вероятности.

Вид кривой р(х) зависит как от числа шагов N, так и от распределения шагов по длинам (т. е. от того, какую долю составляют шаги данной длины). К сожалению, я не могу здесь заниматься доказательством этого, а только скажу, что при достаточно большом числе шагов N плотность p(х) одинакова для всех разумных распределений шагов по длинам и зависит лишь от самого N. На фиг. 6.7 показаны три графика р(х) для различных N.

Фиг. 6.7. Плотность вероятности оказаться при случайном блуждании через N шагов на расстоянии D. D измеряется в единицах средней квадратичной длины шага.


Заметьте, что «полуширины» этих кривых, как это и должно быть по нашим предыдущим расчетам, приблизительно равны √N.

Вы, вероятно, заметили также, что величина р(х) вблизи нуля обратно пропорциональна √N. Это происходит потому, что все кривые по форме очень похожи, только одни «размазаны» больше, а другие — меньше, и, кроме того, площади, ограниченные каждой кривой и осью х, должны быть равны. Действительно, ведь р(хx; это вероятность того, что D находится где-то внутри интервала Δx; (Δx мало). Как определить вероятность того, что D находится где-то между x1 и х2? Для этого разобьем интервал между x1 и х2 на узкие полоски шириной Δx; (фиг. 6.8) и вычислим сумму членов р(xx для каждой такой полоски.

Фиг. 6.8. Вероятность [заштрихованная область под кривой р(х)] того, что при случайном блуждании пройденное расстояние D окажется между x1и х2.


Геометрически эта вероятность [запишем ее в виде Р(x1х2)] равна площади заштрихованной области на фиг. 6.8. При этом чем уже будут наши полоски, тем точнее результат. Поэтому можно записать

(6.18)

Площадь же ограничения всей кривой просто равна вероятности того, что D принимает какое-то значение между -∞ и +∞. Ясно, что она должна быть равна единице, т. е.

(6.19)

Ну а поскольку ширина кривых на фиг. 6.7 пропорциональна √N, то, чтобы сохранить ту же площадь, их высота должна быть пропорциональна 1/√N.

Плотность вероятности, которую мы только что описали, встречается наиболее часто. Она известна также под названием нормальной, или гауссовой, плотности вероятности и записывается в виде

(6.20)

причем величина σ называется стандартным отклонением. В нашем случае σ=√N или √NSск, если средняя квадратичная длина шага отлична от единицы.

Мы уже говорили о том, что движения молекул или каких-то других частиц в газе похожи на случайные блуждания. Представьте себе, что мы открыли в комнате пузырек с духами или каким-то другим органическим веществом. Тотчас же молекулы его начнут испаряться в воздух. Если в комнате есть какие-то воздушные течения, скажем циркуляция воздуха, то они будут переносить с собой пары этого вещества. Но даже в совершенно спокойном воздухе молекулы будут распространяться, пока не проникнут во все уголки комнаты. Это можно определить по запаху или цвету. Если нам известен средний размер «шага» и число шагов в секунду, то можно подсчитать вероятность обнаружения одной или нескольких молекул вещества на некотором расстоянии от пузырька через какой-то промежуток времени. С течением времени число шагов возрастает и газ «расползается» по комнате, подобно нашим кривым на фиг. 6.7. Длина шагов и их частота, как вы узнаете впоследствии, связаны с температурой и давлением воздуха в комнате.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука