Читаем Том 1. Механика, излучение и теплота полностью

Продолжим наш предыдущий пример. Что за силы действуют на тело вблизи поверхности Земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус Земли R, почти не зависящая от высоты; она равна F=GmM/R2=mg, где g=GM/R2 — так называемое ускорение силы тяжести. В горизонтальном направлении тело по-прежнему будет двигаться с постоянной скоростью, однако движение в вертикальном направлении более интересно. По Второму закону Ньютона

(9.9)

После сокращения массы m получаем, что ускорение в направлении x постоянно и равно g. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

(9.10)

Рассмотрим другой пример. Представим, что мы смогли создать устройство (фиг. 9.3), в котором сила прямо пропорциональна отклонению от положения равновесия и направлена противоположно ему, — это пружина с грузиком.

Фиг. 9.3. Грузик на пружинке.


Действительно, поскольку сила тяжести компенсируется начальным натяжением пружины, то имеет смысл говорить только об избыточной силе. Если потянуть грузик вниз, то пружина растянется и потянет его вверх, если же толкать грузик вверх, то пружина сожмется и будет толкать его вниз. При этом все устроено таким образом, что чем больше сила и чем сильнее мы оттягиваем грузик вниз, тем больше растягивается пружина и тем сильнее она тянет его вверх, и наоборот. Наблюдая за работой этого устройства, мы видим довольно интересное движение: вверх-вниз, вверх-вниз... Возникает вопрос, могут ли уравнения Ньютона правильно описать его? Если применить закон Ньютона (9.7) для такого периодического осциллятора, то получим следующее уравнение:

(9.11)

т. е. здесь мы встречаемся с таким положением, когда x-компонента скорости изменяется с быстротой, пропорциональной x. Нет смысла сейчас вводить многочисленные константы; в целях простоты предположим, что либо изменился масштаб времени, либо что-то произошло с другими единицами измерения, словом, они выбраны так, что k/m равно единице. Итак, будем пытаться решать уравнение

(9.12)

Чтобы пойти дальше, нужно сначала разобраться в том, что такое vx; то, что это быстрота изменения положения, нам, разумеется, уже известно.

§ 4. Смысл динамических уравнений

Попытаемся теперь понять, что же означает уравнение (9.12). Пусть в данный момент времени t тело находится в точке x и движется со скоростью vx. Каково будет его положение и скорость спустя небольшой промежуток времени, т. е. в момент t+ε? Если мы сможем ответить на этот вопрос, то проблема решена, так как, исходя из начальных условий, т. е. положения и скорости в некоторый начальный момент времени, можно сказать, как они изменяются в первый момент, а зная положение и скорость в первый момент, можно найти их и в следующий и т. д. Таким образом, шаг за шагом выстраивается вся картина движения. Для большей определенности предположим, что в момент t=0 положение грузика x=1, а его скорость vx=0. Почему вообще движется грузик? Да потому, что на него в любом положении, за исключением положения равновесия х=0, действует сила. Если х>0, то эта сила направлена вверх. Следовательно, скорость, которая вначале была нулем, благодаря уравнениям движения начинает изменяться. Но как только скорость начинает возрастать, грузик приходит в движение. Для любого момента времени t при очень малом е можно с достаточно хорошей точностью найти положение в момент t+ε через скорость и положение в момент t:

(9.13)

Конечно, это выражение тем точнее, чем меньше ε, но оно может быть достаточно точным, даже когда интервал ε не исчезающе мал. Что теперь можно сказать о скорости? Чтобы определить скорость в момент t+ε, очевидно, нужно знать, как она изменяется со временем, т. е. нужно знать ускорение. А как узнать его? Вот здесь-то нам на помощь приходят уравнения динамики. Именно они позволяют определить, чему равно ускорение. В нашей задаче уравнение динамики говорит, что ускорение равно -x. Поэтому

(9.14)

(9.15)

Уравнение (9.14) еще кинематическое; оно просто говорит о том, что из-за наличия ускорения скорость изменяется. Однако уравнение (9.15) уже динамическое, потому что оно связывает ускорение с силой. Оно говорит, что в данной частной задаче для данного момента времени ускорение можно заменить на -x(t). Следовательно, если в какой-то момент времени нам известны положение х и скорость vx, то мы знаем и ускорение, которое дает возможность найти скорость в следующий момент, а скорость в свою очередь определяет новое положение и т. д. Вот каким образом действует весь этот динамический механизм! Действующая сила немного изменяет скорость, а скорость приводит к небольшому изменению положения.

§ 5. Численное решение уравнений

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука