Читаем Том 11. Карты метро и нейронные сети. Теория графов полностью

В этом выражении не фигурирует число ребер, а также отсутствуют шестиугольные грани и вершины, в которых сходятся три ребра. Запомните выражение (*): оно поможет нам совершить много удивительных открытий. Например, вспомним, какую форму имеет футбольный мяч. Это многогранник, в котором сочетаются пятиугольные и шестиугольные грани, а в каждой вершине сходятся три ребра.

Существуют ли другие многогранники, где вершины и грани обладают теми же особенностями? Заметим, что С3 = С4 = Сn = 0 при n >= 7, V4 = Vn = 0 при n >= 5, следовательно, согласно (*) должно выполняться равенство С5 = 12, но С6 остается неопределенным. Б. Грюнбаум и Т. С. Моцкин доказали, что С6 может принимать любое значение, отличное от 1. Любопытно, что пятиугольных граней именно 12.

В многограннике, образованном четырехугольниками и шестиугольниками, согласно (*) 2С4 = 12 + 2V4 + 4V5 + …, то есть минимум шесть его граней будут четырехугольниками. Если вершины будут иметь степень 3, то таких граней будет ровно 6. Если гранями многогранника являются треугольники и шестиугольники, то 3С3 = 12 + 2V4 + 4V5 + … и как минимум четыре грани будут иметь форму треугольника. Если вершины будут иметь степень 3, то треугольных граней будет ровно четыре.

Всегда существует треугольная, четырехугольная или пятиугольная грань

Попробуйте представить себе выпуклый многогранник, у которого нет ни одной грани в форме треугольника, четырехугольника или пятиугольника. Очевидно, что такого выпуклого многогранника не существует.

Вспомним формулу (*) из прошлого раздела:

3C3 + 2C4 + C5 = 12 + 2V4 + 4V5 + … + С7 + 2С8 + … (*)

Заметим, что выражение в правой части больше или равно 12, то есть всегда выполняется соотношение

3С3 + 2С4 + С5 >= 12.

Кроме того, С3, С4 и С5 не могут быть равны нулю одновременно. Можно сформулировать следующую теорему:

«В любом выпуклом многограннике всегда существует как минимум одна грань в форме треугольника, четырехугольника или пятиугольника».

Другие грани могут иметь любую форму, но как минимум одна грань должна иметь три, четыре или пять ребер. Вспомним, что правильным многогранником называется выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и во всех вершинах которого сходится одинаковое число ребер. Тогда предыдущую теорему можно записать так:

«Единственными правильными многогранниками являются тетраэдр, октаэдр, икосаэдр, куб и додекаэдр».

* * *

ГРАФЫ, СООТВЕТСТВУЮЩИЕ ПРАВИЛЬНЫМ МНОГОГРАННИКАМ

Пять правильных многогранников необязательно изображать в перспективе — можно построить соответствующие им плоские графы. Значения V, А и С для следующих фигур представлены в таблице ниже.

Заметим, что в полученной нами теореме общее соотношение Эйлера сочетается с характеристиками многоугольников, ограничивающих часть пространства, образующего многогранник.

* * *

Исходя из полученного результата (всегда будет существовать грань в форме треугольника, четырехугольника или пятиугольника) и из определения правильного многогранника получим, что единственно возможные правильные многогранники будут полностью образованы либо равносторонними треугольниками, либо квадратами, либо правильными пятиугольниками.

Если все грани многогранника — равносторонние треугольники (их углы равны 60°), формула (*) сводится к 3С3 = 12 + 2V4  + 4V5. В тетраэдре С3 = 4 (и, разумеется, V3  = 4, V4 = V5 = 0). Для октаэдра V4 = 6, V3 = V5 = 0 и С3 = 8. В икосаэдре С3 = 20 и V5 = 12.

Если все грани многогранника — квадраты, то в его вершинах могут сходиться только три ребра, поэтому V4 = V5 = 0 и по формуле (*) 2С4 = 12, то есть С4 = 6. Таким образом, этот многогранник — куб.

Если все грани многогранника — правильные пятиугольники, то степень его вершин может равняться только 3. По формуле (*) С5 = 12 — это додекаэдр.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное