Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Рассмотрим пример. Если средний возраст сотрудников-мужчин в компании равен 36 годам, а средний возраст женщин — 32 годам, то каков средний возраст всех сотрудников? Ответ зависит от конкретной численности мужчин и женщин. Если половина сотрудников — мужчины, а половина — женщины, то средний возраст будет равняться 34 годам. Если 73 % сотрудников — мужчины, а 23 % — женщины, то средний возраст будет равен 35 годам. Заметим, что доля мужчин и женщин рассчитывается по следующим формулам: p1 = n1(n1 + n2) и р2 = n2(n1 + n2), поэтому первую формулу можно записать в следующем виде: x¯t = р1x¯1 + р2x¯2.

В некоторых случаях среднее арифметическое является не самой подходящей величиной. Если мы хотим обобщить данные о сроках доставки товара или о времени поезда в пути, среднее арифметическое не даст нам полезной информации. Может быть так, что по договору срок поставки должен составлять 10 дней, при этом в половине случаев товар доставляется за два дня, что становится неожиданностью для заказчика (на складе может не быть места для товара, к примеру), а в другой половине — за 18 (заказчик уже потерял надежду получить товар). Хотя в среднем сроки поставок соблюдаются идеально точно, означает ли это, что в компании все в порядке?

Аналогичная ситуация может произойти и в примере с поездом. Если в половине случаев мы будем приезжать на работу на полчаса раньше, это не компенсирует получасовых опозданий во второй половине случаев, особенно если в офис нельзя попасть до начала рабочего дня. В этих примерах наиболее информативной величиной будет процент опозданий или процент случаев, когда поезд опаздывает больше чем на определенное время.

Еще один недостаток среднего арифметического — сильная зависимость от крайних значений. Разумеется, странно, что число ног у большинства людей выше среднего, но это на самом деле так: у некоторых людей всего одна нога или нет ни одной (крайние значения), из-за чего среднее число ног у людей чуть меньше двух.


Медиана

Медиана — это значение, которое будет располагаться точно в центре, если мы упорядочим значения в порядке возрастания. Если даны значения 6, 7, 5, 2 и 9, их медиана равна 6 — именно это значение расположено в центре упорядоченного ряда из этих чисел. Если число элементов четно, медиана рассчитывается как среднее арифметическое двух центральных элементов. Свойства медианы частично компенсируют недостатки среднего арифметического. Кроме того, она меньше подвержена воздействию крайних значений. К примеру, среднее арифметическое вышеприведенных чисел равно 5,8, медиана — 6. Если при вводе этих чисел в компьютер мы вместо 9 случайно укажем 99, среднее арифметическое станет равно 23,8, а медиана будет по-прежнему равна 6.

Еще одним преимуществом медианы по сравнению со средним арифметическим является тот факт, что по определению ровно 50 % значений будут меньше медианы, оставшиеся 50 % — больше. Если, например, мы хотим узнать, входим ли мы в число наиболее высокооплачиваемых сотрудников, нужно сравнить нашу зарплату именно с медианой. Рассмотрим 10 сотрудников с зарплатами 0,8; 0,8; 0,9; 0,9; 1,0; 1,0; 1,1; 1,1; 1,2 и 10 тысяч евро. Все сотрудники, за исключением одного (90 % от общего числа), получают зарплату меньше средней, которая равна 1,88 тысяч евро. С медианой подобное невозможно: если наша зарплата больше медианы, мы гарантированно входим в 50 % наиболее высокооплачиваемых сотрудников.

Другой пример. Если для сдачи экзамена нужно набрать 5 баллов и более, а средняя оценка в группе равна 5, мы не знаем, сколько студентов сдали экзамен. Если экзамен сдавали 50 студентов, может случиться так, что 41 студент набрал 4 балла и не сдал экзамен, восемь студентов получили 10 баллов, еще один — 6 баллов. В результате средняя оценка равна 5, хотя распределение оценок в группе действительно немного необычно. Если медиана равна 5, то половина студентов в группе точно сдала экзамен.


Мода

Когда речь идет о показателях центра распределения, также всегда упоминается мода. Мода — это значение, которое встречается наиболее часто. В выборке 0, 2, 7, 2, 8, 2, 5, 4 мода равна 2. Ее имеет смысл использовать для качественных показателей. Так, например, если в выборке новорожденных чаще всего встречаются карие глаза, то мода равна карему цвету. Она не содержит какой-то другой информации. Использование моды в этом контексте обусловлено скорее традициями, чем реальной полезностью.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика