Читаем Том 2. Электромагнетизм и материя полностью

У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благодаря этому они могут иметь суммарный момент количества движения и магнитный момент. Такие атомы принадлежат к «переходным элементам» периодической таблицы Менделеева, например: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их относятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.

Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстраивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».

НамагниченностьМ материала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен <μ>cp, то М можно записать как произведение N на средний магнитный момент:

(35.8)

Это определение М аналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).

Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент μ каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна -μ·B=-μBcosθ, где θ — угол между моментом и полем. Согласно статистической физике, относительная вероятность угла равна e-энергия/kT так что угол θ° более вероятен, чем угол π. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей М направлена параллельно В и имеет величину

(35.9)

[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение μB/kT много меньше единицы.

Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это явление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникающий в нем магнитный момент в случае слабых полей пропорционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.

Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1/2. Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений Jz. Для Jz=+ℏ/2 магнитное поле изменяет энергию на величину

(35.10)

(Для атомов сдвиг энергии ΔU положителен, ибо заряд электрона отрицателен.) Для Jz=-/2 энергия изменяется на величину

(35.11)

Для сокращения записи обозначим

(35.12)

тогда

(35.13)

Совершенно ясен и смысл μ0; — μ0 равно z-компоненте магнитного момента для спина, направленного вверх, а +μ0 равно z-компоненте магнитного момента в случае спина, направленного вниз.

Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна

В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле вероятности пропорциональны

(35.14)

Число же атомов в единице объема со спином, направленным вверх, равно

(35.15)

а со спином, направленным вниз,

(35.16)

Постоянная а должна определяться из условия

(35.17)

т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем

(35.18)

Однако нас интересует средний магнитный момент в направлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -μ0, а со спином, направленным вниз, +μ0, так что средний момент будет

(35.19)

Тогда М — магнитный момент единицы объема — будет равен N<μ>ср. Воспользовавшись выражениями (35.15)—(35.17), получим

(35.20)

Это и есть квантовомеханическая формула для М в случае атомов со спином j=1/2. К счастью, ее можно записать более коротко через гиперболический тангенс:

(35.21)

График зависимости М от В приведен на фиг. 35.7.

Фиг. 35.7. Изменение намагниченности парамагнетика при изменении напряженности магнитного поля В.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука