Стереографическая проекция строится следующим образом: рассмотрим сферу и плоскость, которая касается сферы в точке
Стереографическая проекция имеет следующие свойства.
1. Так как она является азимутальной, карта в этой проекции имеет форму круга и охватывает всего одно полушарие. При изображении в этой проекции больших участков земной поверхности искажения слишком велики.
2. Искажение на меридианах и параллелях равно
Следовательно, эта проекция конформна, то есть сохраняет величины углов.
Однако она не сохраняет ни геодезические линии, ни площади, ни расстояния.
3. Так как эта проекция является азимутальной, она сохраняет геодезические линии, проходящие через точку касания сферы и плоскости. Иными словами, если центр проекции совпадает с одним из полюсов, меридианы изображаются прямыми, проходящими через центр карты.
4. Все меридианы и параллели (точнее все окружности сферы, в том числе большие круги) изображаются окружностями на плоскости, за исключением окружностей, проходящих через точку касания — они изображаются прямыми (это особенность отображений, называемых инверсиями, а стереографическая проекция является результатом инверсии).
5. Локсодромы (кривые на поверхности сферы, пересекающие меридианы под постоянным углом) изображаются в виде логарифмических спиралей.
6. Искажение площадей, форм и размеров вблизи точки касания невелико и возрастает по мере удаления от нее. При выходе за границы полушария, где расположена точка касания (то есть при пересечении экватора в полярных версиях проекции), искажения становятся слишком велики.
Далее мы аналогично центральной проекции рассчитаем искажения, возникающие при использовании стереографической проекции. Рассмотрим диск
Примем радиус сферы равным 1, так как речь идет о сферической модели Земли. Посмотрим, как построенный нами диск изменится в стереографической проекции, и определим, какие искажения она вносит.
* * *
СУММА УГЛОВ ТРЕУГОЛЬНИКА
Все мы знаем, что сумма углов произвольного треугольника равна 180° (или π радиан) — половине полного оборота вокруг оси. Этот классический результат евклидовой геометрии упоминается уже в «Началах» (предложение 32 книги I), созданных греческим математиком
* * *
Перед построением стереографической проекции диска на следующем рисунке обозначим через