Глобусы широко используются в картографии, географии, мореходном деле, геодезии, океанографии, климатологии, сейсмографии и других науках. Они позволяют получить реальное представление о том, как выглядит Земля, какую форму она имеет, как ее континенты расположены относительно друг друга. Поэтому важно, чтобы во всех школах и во всех домах был хотя бы один глобус, позволяющий увидеть, как на самом деле выглядит наша планета. Кроме того, благодаря особой конструкции подставки глобуса, мы можем наблюдать за вращением Земли: та часть глобуса, которую мы видим, будет соответствовать той части планеты, где сейчас день, невидимая часть глобуса — той части, где сейчас ночь.
Хотя в теории глобус — это идеальная модель Земли, ввиду некоторых непреодолимых ограничений иногда его использование невозможно (даже если сам глобус сконструирован безупречно).
1. Глобусы хрупкие и объемные, поэтому их сложно хранить, перевозить, а иногда с ними неудобно работать.
2. Производство глобусов очень дорого (особенно это касается моделей большого размера), при этом они недостаточно удобны для изучения деталей.
3. На них сложно выполнять измерения и оценивать величины углов.
4. Глобус позволяет рассматривать только одно полушарие одновременно.
5. Изготовить печатную или электронную репродукцию части глобуса нельзя.
В завершение этой главы мы расскажем еще об одной группе проекций, обладающих общими метрическими свойствами. Как мы уже говорили, каждый картограф мечтает о карте с постоянным масштабом (коэффициентом уменьшения), единственным искажением которой будет равномерное изменение размера. Однако мы доказали, что построить такую карту невозможно: масштаб любого изображения Земли на плоскости не является постоянным и отличается в разных точках и направлениях, поскольку любая картографическая проекция неизбежно вносит искажения. Тем не менее существуют проекции, в которых некоторое семейство кривых будет иметь постоянный масштаб, а их длина будет пропорциональна длине этих кривых, начерченных на поверхности Земли (такие кривые называются стандартными). Проекции, обладающие этим свойством, называются равнопромежуточными. Рассмотрим три примера проекций этой группы: цилиндрическую, азимутальную и коническую.
Цилиндрическая равнопромежуточная проекция
С математической точки зрения эта проекция тривиальна. В простейшем случае, когда линия касания проходит по экватору, широта и долгота точки интерпретируются как ее декартовы координаты (см. следующий рисунок). В равновеликой цилиндрической проекции Ламберта участки земной поверхности, расположенные на высоких широтах, словно сжимаются, в проекции Меркатора — расширяются, а в цилиндрической равнопромежуточной проекции все параллели равноудалены друг от друга. Вдоль меридианов и экватора масштаб остается постоянным (в этом случае сетка меридианов и параллелей будет квадратной: такая проекция носит название
Эта проекция используется в простых картах мира и в картах регионов, не содержащих много географических данных. Однако для составления более или менее подробных карт эта проекция в XX веке практически не применяется. Геологическая служба США и другие агентства обычно используют ее для индексных карт, на которых схематично указываются различные карты, включенные в сборник или атлас, и страница, на которой они находятся.
Азимутальная равнопромежуточная проекция