Читаем Том 3. Квантовая механика полностью

Волновая функция ψ(r) электрона в атоме не описывает, стало быть, размазанного электрона с плавно меняющейся плотностью заряда. Электрон может быть либо здесь, либо там, либо где-то еще, но где бы он ни был, он всегда—точечный заряд. Но, с другой стороны, представим себе случай, когда огромное число частиц находится в одном и том же состоянии, очень большое их число с одной и той же волновой функцией. Что тогда? Одна из них будет здесь, другая — там, и вероятность обнаружить любую из них в данном месте пропорциональна ψψ*. Но поскольку частиц так много, то, если я посмотрю в какой-нибудь объем dxdydz, я, вообще говоря, обнаружу там примерно ψψ*dxdydz частиц. Итак, когда ψ— волновая функция каждой из огромного количества частиц, поголовно пребывающих в одном и том же состоянии, то в этом случае ψψ* можно отождествлять с плотностью частиц. Если в этих условиях все частицы несут одинаковые заряды q, то мы можем пойти дальше и отождествить ψ*ψ с плотностью электричества. Обычно, если ψψ* имеет размерность плотности вероятности, то ψψ* надо умножить на q, чтобы получить размерность плотности заряда. Для наших теперешних целей мы можем включить этот постоянный множитель в ψ и принять за плотность электрического заряда само ψψ*. Если помнить об этом, то ^J (тот ток вероятности, который я вычислил) можно будет считать просто плотностью электрического тока.

Итак, когда в одном и том же состоянии может находиться очень много частиц, возможно иное физическое толкование волновых функций. Плотность заряда и электрический ток могут быть вычислены прямо из волновых функций, и волновые функции приобретают физический смысл, который распространяется на классические, макроскопические ситуации.

Нечто подобное может случиться и с нейтральными частицами. Если у нас имеется волновая функция отдельного фотона, то это — амплитуда того, что он будет обнаружен где-то. Хотя мы и не писали его, однако существует уравнение для фотонной волновой функции, аналогичное уравнению Шредингера для электрона. Фотонное уравнение попросту совпадает с уравнениями Максвелла для электромагнитного поля, а волновая функция — с векторным потенциалом А. Волновая функция оказывается обычным векторным потенциалом. Физика квантов света совпадает с классической физикой, потому что фотоны суть невзаимодействующие бозе-частицы и многие из них могут пребывать в одинаковом состоянии; более того, как вы знаете, они любят бывать в одинаковом состоянии. В момент, когда мириады их окажутся в одном и том же состоянии (т. е. в одной и той же электромагнитной волне), вы сможете непосредственно измерить волновую функцию (т. е. векторный потенциал). Конечно, исторически все шло иным путем. Первые наблюдения были проведены при таких обстоятельствах, когда было много фотонов в одинаковом состоянии, и тем самым удалось открыть правильные уравнения для отдельного фотона, наблюдая непосредственно своими глазами природу волновой функции на макроскопическом уровне.

Трудность с электроном состоит в том, что вы не можете поместить в одно и то же состояние больше одного электрона. Поэтому очень долго считалось, что волновая функция уравнения Шредингера никогда не будет иметь макроскопического представления, подобного макроскопическому представлению амплитуды для фотонов. Но теперь стало ясно, что явление сверхпроводимости представляет именно такой случай.

<p><strong>§ 5. Сверхпроводимость</strong></p>

Вы знаете, что очень многие металлы ниже определенной температуры (температура у каждого металла своя) становятся сверхпроводящими[91]. Если вы как следует снизите температуру то металлы начинают проводить электричество без всякого сопротивления. Это явление наблюдалось у очень многих металлов, но не у всех, и теория этого явления причинила немало хлопот. Понадобилось довольно долгое время, чтобы разобраться, что происходит внутри сверхпроводников, и я опишу здесь только то, что будет нужно для наших нынешних целей. Оказывается, что из-за взаимодействия электронов с колебаниями атомов в решетке возникает слабое эффективное притяжение между электронами. Грубо говоря, электроны в итоге взаимодействия образуют связанные пары.

Известно также, что каждый отдельный электрон является ферми-частицей. Но связанная пара уже будет вести себя как бозе-частица, потому что, если я переставляю местами два электрона в паре, я дважды меняю знак волновой функции, а это означает, что я ничего не меняю. Пара является бозе-частицей.

Энергия спаривания (энергия притяжения электронов) очень-очень слаба. Незначительной температуры достаточно, чтобы тепловое возбуждение разбросало электроны и обратило их в «нормальные» электроны. Но если снизить температуру достаточно сильно, то эти электроны сделают все от них зависящее, чтобы прийти в самое наинизшее состояние, и уж тогда-то действительно разберутся попарно.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги