Следует сказать, что наше приближенное рассмотрение иона H2+ как двухуровневой системы рассыпается в прах, едва лишь протоны сблизятся до минимума энергии на кривой фиг. 8.3; тогда больше не получается хорошего значения истинной энергии связи. На малых удалениях энергии двух «состояний» на самом деле уже не равны Е0; требуется более тонкое квантовомеханическое рассмотрение.
Положим, мы теперь заинтересуемся, что случилось бы, если бы вместо двух протонов у нас были два разных объекта, скажем один протон и один положительный ион лития (причем обе частицы по-прежнему имеют по единичному положительному заряду). В этом случае два члена Н11 и H22 в гамильтониане больше не совпадали бы; они были бы совершенно различны. Если бы оказалось, что разность (H11-H22) по абсолютной величине много больше А=-H12, то сила притяжения стала бы очень слабой. В этом можно убедиться следующим образом.
Если в (8.3) подставить H12H21=A2, то мы получим
Когда H11-H22 много больше А2, корень довольно точно равен
Тогда энергии обращаются в
(8.8)
Теперь они почти вплотную совпадают с энергиями H11 и H22 изолированных атомов и только чуть-чуть отличаются из-за наличия амплитуды перескока А.
Разность энергий (ЕI-ЕII) равна
Добавка к расстоянию между уровнями из-за переброса электрона уже не равна 2А; она составляет А /(Н11-Н22) — часть этой величины (что по предположению много меньше единицы). Кроме того, сама зависимость ЕI-ЕII от расстояния между ядрами сейчас намного слабее, чем для иона Н+2: в нее тоже входит множитель А/(Н11-Н22). Можно поэтому понять, отчего связь несимметричных двуатомных молекул, как правило, очень слаба.
В нашей теории иона Н+2 мы открыли объяснение механизма, с помощью которого электрон, распределенный между двумя протонами, создает в итоге силу притяжения между ними даже тогда, когда они очень удалены друг от друга. Сила притяжения проистекает от уменьшения энергии системы, вызываемого тем, что у электрона есть возможность прыгать от одного протона к другому. При таких прыжках система переходит от конфигурации атом водорода — протон к конфигурации протон — атом водорода и обратно. Процесс символически можно записать так:
Сдвиг энергии, вызываемый этим процессом, пропорционален амплитуде А того, что электрон с энергией -WH (его энергия связи в атоме водорода) может от одного протона перейти к другому.
При больших расстояниях R между протонами электростатическая потенциальная энергия электрона близка к нулю почти во всем том пространстве, которое он вынужден преодолеть, делая прыжок. Так что в этом пространстве электрон движется почти как свободная частица в пустом пространстве, но обладая при этом отрицательной энергией! В гл. 1 [уравнение (1.7)] мы видели, что амплитуда для частицы определенной энергии перейти с одного места на другое, удаленное на расстояние r, пропорциональна
где р — импульс, отвечающий заданной энергии. В теперешнем случае (применяется нерелятивистская формула) р определяется из выражения
(8.9)
А это значит, что р —число мнимое:
(другой знак перед корнем приводит к абсурду).
Стало быть, следует ожидать, что амплитуда А для иона Н2+ будет меняться как
(8.10)
при больших расстояниях R между протонами. Сдвиг энергии, вызываемый электронной связью, пропорционален А; значит, существует сила, сближающая два протона, которая пропорциональна (при больших R) производной от (8.10) по R.
Наконец, для полноты следует заметить, что в одноэлектронной системе с двумя протонами есть еще один эффект, который тоже приводит к зависимости энергии от R. Мы пока им пренебрегали, поскольку он обычно не очень важен, за исключением как раз тех больших расстояний, на которых энергия обменного члена А убывает экспоненциально до очень малых величин. Новый эффект, о котором мы говорим, — это электростатическое притяжение протона к атому водорода, возникающее по той же причине, по какой любой заряженный предмет притягивает к себе незаряженный. «Голый» протон создает электрическое поле ℰ (изменяющееся как 1/R2) возле нейтрального атома водорода. Атом становится поляризованным, приобретая наведенный дипольный момент μ, пропорциональный ℰ. Энергия диполя есть μℰ,т. е. пропорциональна ℰ2, или 1/R4. Значит, в выражении для энергии системы существует член, убывающий как четвертая степень расстояния (это поправка к e0). Эта энергия спадает с расстоянием медленнее, чем сдвиг А, даваемый формулой (8.10). На каких-то больших расстояниях R член с R4 становится важнейшим, определяющим изменение энергии с R, и поэтому единственной оставшейся силой. Заметьте, что электростатический член для обоих базисных состояний имеет один знак (раз сила притягивает, то энергия отрицательна), а потому и для обоих стационарных состояний его знак один и тот же, в то время как член электронного обмена А для двух стационарных состояний дает разные знаки.
§ 2. Ядерные силы