Читаем Том 37. Женщины-математики. От Гипатии до Эмми Нётер полностью

«ЗОЛОТОЙ РЕБЕНОК» ЮРИЙ МАТИЯСЕВИЧ (Р. 1947 Г.)

Нет никаких сомнений, что Юрий Матиясевич был одаренным ребенком. В 17 лет он стал победителем математической олимпиады, проходившей не где-нибудь, а в Москве. Он является почетным доктором многих университетов и членом различных академий наук, однако для математиков все эти регалии не имеют особого значения. Для них важно, что Матиясевич внес основной вклад в решение десятой проблемы Гильберта, в теории графов его именем назван полином, а его число Эрдёша равно 2. Матиясевич заинтересовался десятой проблемой Гильберта в 1965 году, в 18 лет, спустя всего год после поступления в университет.

В 22 года он нашел ее решение, что стало большим событием в мире математики. Джулия Робинсон писала в письме Матиясевичу: «Теперь, когда я знаю, что это правда, все это кажется мне прекрасным и удивительным. Если тебе в самом деле всего 22 года, мне доставляет особое удовольствие думать, что когда я сформулировала свою гипотезу, ты был еще ребенком, и мне следовало лишь дождаться, пока ты подрастешь».



Юрий Матиясевич в 1969 году, когда он нашел решение десятой проблемы Гильберта.


Представить себе ход мыслей Матиясевича непросто. Приведем всего один элементарный пример, который Юрий Матиясевич предложил в юности, когда ему было всего 24 года, вместе с Сергеем Стечкиным (1920–1995). Постройте параболу так, как показано на иллюстрации. Сделать это очень просто, но на всякий случай укажем, что эта парабола описывается уравнением у = х2. Обозначьте на ней точки с ординатами 2, 3, 4, 5, 6 и так далее. Соедините верхние точки с нижними.

Что общего будет у всех точек, отмеченных на горизонтальной оси? Их координатами будут простые числа. Через эти точки не проходит ни одна прямая. Это построение, которое можно назвать математической игрой, называется решетом Матиясевича — Стечкина и доступно любому старшекласснику, но у всякого любителя математики при его виде перехватит дыхание. Таков Юрий Матиясевич.


* * *

Скажем несколько слов о менее известной грани личности Джулии Робинсон — о Джулии Робинсон как о политике. Она была дальней родственницей Эдлая Стивенсона (он был двоюродным братом ее мужа). Их взгляды во многом совпадали, и в 1950 году Джулия вышла на политическую сцену: она оставила математику и присоединилась к избирательной кампании Стивенсона. Когда Эйзенхауэр одержал над ним победу (причем дважды), Джулия, должно быть, испытала разочарование, а математики, занимавшиеся десятой проблемой Гильберта, напротив, вздохнули с облегчением. Как бы то ни было, Джулия Робинсон много лет была членом демократической партии.

Напоследок заметим: Джулия Робинсон всегда была сторонницей свободного доступа к знаниям и равных возможностей для всех — и мужчин, и женщин.

Эпилог

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги