С точки зрения геометрии триангуляция заключается в использовании треугольников и их тригонометрических свойств для вычисления неизвестных параметров (сторон и углов) на основе известных. В геодезии триангуляцией называется метод, позволяющий определить размеры Земли, покрыв ее поверхность сетью смежных треугольников. Измерения при триангуляции начинаются с грамотного выбора вершин треугольника и определения точной длины одной из сторон треугольника.
Далее из вершин этой стороны производятся измерения углов треугольника. Полученный треугольник станет первым в сети треугольников, которая в конечном итоге охватит дугу меридиана.
Гениальный писатель
«Чтобы лучше понять, что представляет собой геодезическая операция, называемая триангуляцией, позаимствуем следующие геометрические построения из учебника «Новые уроки космографии» г-на А. Гарсе, преподавателя математики лицея Генриха IV. С помощью прилагаемого здесь рисунка эта любопытная процедура будет легко понята:
«Пусть
Таким образом, для проведения триангуляции необходимо как можно точнее определить длину стороны треугольника, которую мы будем называть основанием, так как от результата этого измерения (на практике оно оказывается самым сложным и трудоемким) зависят все остальные расчеты. Основание должно быть как можно длиннее, чтобы свести к минимуму возможные ошибки. Из обоих концов основания производятся измерения углов, которые основание образует с двумя другими сторонами треугольника. Эти две стороны сходятся в грамотно выбранной третьей вершине. Так определяется первый треугольник сети.
Зная два угла и сторону (основание) треугольника, мы при помощи тригонометрических методов можем без труда вычислить третий угол и две оставшиеся стороны. Так мы полностью определим треугольник и сможем выбрать любую из трех его сторон в качестве основания второго, смежного треугольника. Если мы последовательно будем добавлять к сети все новые и новые смежные треугольники, то в конечном итоге сеть триангуляции охватит две крайние точки дуги меридиана, которую мы хотим измерить, и мы определим астрономическую широту и долготу этих точек.
Далее по известной длине основания необходимо найти длину его горизонтальной проекции. В общем случае вершины треугольника необязательно находятся на одной высоте, поэтому их следует спроецировать на горизонтальную плоскость или контрольную поверхность. Снелл нашел способ внести в формулы триангуляции поправки, учитывающие кривизну Земли.
Основой для систематического использования современных сетей триангуляции стали результаты первых измерений, выполненных Снеллом, а также рассчитанное им расстояние между городами Алкмар и Берген-оп-Зом в Нидерландах. Эти города находились приблизительно на одном меридиане и отстояли друг от друга на один градус долготы. В качестве длины основания Снелл выбрал расстояние от своего дома до башни местной церкви. Он построил сеть из 33 треугольников и измерил их углы при помощи квадранта размером 2x2 метра. Проведя измерения, он определил, что расстояние между городами составляет 117 449 ярдов (107,393 км). Фактическое расстояние между этими городами составляет примерно 111 км.