Читаем Том 38. Измерение мира. Календари, меры длины и математика полностью

При обустройстве наблюдательных пунктов им помогали шведские военные. Ученые проводили триангуляцию во время длинных летних дней и охватили расстояние в 100 километров между городами Киттис и Торнео. Астрономические измерения производились весной и осенью, когда ночи были уже достаточно длинными и в то же время не слишком холодными. Основание триангуляции было измерено по замерзшему руслу реки. Итоговый результат измерений, проведенных членами экспедиции Мопертюи, был таков: на средней широте 66°20′ длина дуги меридиана величиной в один градус равнялась 37 438 туазам. Если сравнить этот результат с результатом измерений Пикара, проведенных близ Парижа на широте около 48° (57060 туазов), то станет очевидно, что Земля представляет собой сфероид, сплюснутый у полюсов.

Гониометрические измерения при триангуляции. Иллюстрация к роману Жюля Верна «Приключения троих русских и троих англичан в Южной Африке».

Экспедиция в Америку, в свою очередь, растянулась на десять лет и превратилась в настоящую эпопею. Участники отправились в путь из Ла-Рошели весной 1735 года и прибыли в Кито год спустя. Им пришлось столкнуться с самыми разными проблемами: помимо постоянных ученых споров, членам экспедиции мешали суровый климат, сложный рельеф, многочисленные финансовые неурядицы, а в 1741 году им и вовсе пришлось разделиться на две группы. Измерения и триангуляция были особенно сложными ввиду особенностей рельефа Анд и большой высоты, превышавшей 4 тысячи метров. Ученые решили построить масштабную триангуляцию из 43 треугольников, чтобы охватить отрезок протяженностью в 354 километра и измерить дугу меридиана величиной не в 1°, а в 3°. Бугер (1749) определил, что длина дуги меридиана величиной в один градус равна 56763 туаза, а Хуан и Ульоа (1748), равно как и ла Кондамин (1751) получили результат в 56768 туазов. Если вспомнить аналогию с арбузом или дыней, которую предложил Вольтер, то можно сказать, что Земля представляет собой скорее арбуз. Результаты измерений и математических расчетов, казалось, подтвердили правоту Ньютона.

* * *

ХОРХЕ ХУАН И КОРОЛЕВСКАЯ ОБСЕРВАТОРИЯ В САН-ФЕРНАНДО (КАДИС)

Испанский мореплаватель Хорхе Хуан и Сантасилья (1713–1773), участвовавший в экспедиции по измерению дуги меридиана на экваторе, внес весомый вклад в развитие испанской науки в XVIII веке. Следы его трудов сохранились до наших дней — он, среди прочего, основал Королевскую обсерваторию в Сан-Фернандо (Кадис) в 1757 году. Современный Королевский институт и обсерватория военно-морских сил — не только сердце астрономических и геодезических исследований, но и научно-исследовательский и культурный центр, находящийся в ведении испанской армии. Сотрудники центра занимаются вычислением эфемерид, определением точного времени, публикуют морские астрономические ежегодники и результаты метеорологических, сейсмических и магнитных наблюдений. Институт отвечает за определение официального испанского времени (всемирное координированное время, или UTC) и за хранение эталонов официальных единиц измерения Испании.

Хорхе Хуани Сантасилья. Морской музей Мадрида.

<p>Глава 5</p><p>Измерение метра</p>
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги