Читаем Том 38. Измерение мира. Календари, меры длины и математика полностью

ВЕЩЕСТВЕННЫЕ ЧИСЛА

Вещественные числа (обозначаются ) — это множество чисел, включающее как рациональные числа (положительные, отрицательные дроби и ноль; обозначаются ), так и иррациональные (алгебраические и трансцендентные), которые имеют бесконечно много непериодических знаков после запятой и которые нельзя представить в виде дроби, как, например, √2, π и так далее.

Примеры вещественных чисел ().

Начиная от натуральных чисел () — 1, 2, 3, … — которые мы используем при счете, — и заканчивая вещественными числами (), которые нужны для измерений в математических моделях, последовательное расширение множеств чисел можно объяснить необходимостью в числах, которые будут выражать результаты определенных операций:

Целые числа () позволяют выразить результат 3 – 4 = -1, рациональные () — (3/4) = 0,75, вещественные () — √2, комплексные () — √-4.

* * *

Точные измерения возможны только в математических моделях. Что и как измеряют математики? В этой науке измерения всегда были тесно связаны с геометрией — разделом, который изучает свойства фигур и тел на плоскости и в пространстве. Интересно отметить, что истоки геометрии восходят к решению конкретных задач, связанных с измерениями.

В элементарной геометрии приводится общее описание объектов и фигур, носящее качественный характер. Если мы хотим получить более конкретное и точное описание, требуется применить количественный подход — и здесь необходимы измерения, а для выражения результатов измерений нужны цифры. Отрезки имеют длину, участки плоскости — площадь, тела в пространстве — объем.

В математических моделях результаты измерений непрерывны, и для того чтобы выразить их, множества рациональных чисел недостаточно — его нужно расширить и включить в него все числа, которые покрывают числовую прямую, то есть вещественные числа. В повседневной жизни мы часто измеряем длину. В математической модели при измерении длины мы откладываем рассматриваемый отрезок вдоль прямой линии и устанавливаем соответствие между точками прямой и обозначающими их вещественными числами.

При этом вещественные числа требуются для измерений даже в, казалось бы, простых случаях. Пифагорейцы, пытаясь найти ответ на вопрос, чему равна длина диагонали квадрата с длиной стороны, равной единице, обнаружили, что существуют несоизмеримые величины. По теореме Пифагора, искомая длина диагонали равна √2, однако результат этой операции нельзя выразить рациональным числом () — для этого потребуются иррациональные числа, и мы вынуждены будем пересечь границу множества .

Длина диагонали квадрата со стороной длиной 1 равна √2, так как по теореме Пифагора √(12 + 12) = √2.

Древние греки, использовавшие при расчетах только рациональные числа, столкнулись со следующей проблемой: как измерить длину диагонали квадрата, если не существует числа, выражающего результат измерения? Решение проблемы приводит к идее о соизмеримых и несоизмеримых величинах: первые можно выразить как величину, кратную или дробную исходной единице измерения, вторые, напротив, нельзя выразить с помощью дробей или пропорций, как в нашем примере с диагональю квадрата.

В книге V «Начал» Евклид (ок. 325 г. до н. э. — ок. 265 г. до н. э.) с помощью своей теории пропорций в приложении к соизмеримым и несоизмеримым величинам решает эту задачу и устанавливает правила работы со всеми видами величин, как соизмеримыми, так и несоизмеримыми.

Величины и единицы

Слово «измерение» происходит от латинского metiri и, согласно Толковому словарю русского языка, означает «определение величины чего-либо какой-либо мерой». Это слово имеет и другие значения, в частности «протяженность измеряемой величины в каком-либо направлении». Единица измерения называется мерой. Например, пинту можно назвать мерой объема, причем ее величина в разных странах отличается; кроме того, существуют разные пинты для жидких и сыпучих объектов.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги