Читаем Том 6. Революции и национальные войны. 1848-1870. Часть аторая полностью

Клебш (1833–1872), уроженец Кенигсберга, профессор политехникума в Цюрихе с 1858, в Гиссене с 1863, в Геттингене с 1868 года и автор Чтений по геометрии (Vorlesungen Geometrie), сделавшихся классическими, особенно прославился употреблением абелевских функций в общей теории кривых и поверхностей, а также исследованиями об изображении одной поверхности на другой. Он же ввел новое фундаментальное начало, именно расследование рода в классификации алгебраических кривых.

Алгебра и анализ. Первым трудом, на котором сказалось влияние идей Грассмана, была книга О комплексных числах Германа Ганкеля (1839–1873), вышедшая в 1867 году, но, несмотря на свои достоинства, встретившая менее радушный прием, чем замечательная посмертная работа (1874) того же автора по истории математики в древности и в средние века.

В 1864 году американский математик Бенджамин Пирс (1809–1880) приступил к изложению своих взглядов на линейную ассоциативную алгебру (обнимающую до 162 различных алгебраических систем). В 1858 году Кэйли обобщил понятие матриц, предложенное Гамильтоном и впоследствии более широко развитое Сильвестером и др.

Артур Кэйли, родившийся в Ричмонде в 1821 году, и Джемс-Джозеф Сильвестер, родившийся в Лондоне в 1814 году (и долгое время бывший профессором в Балтиморе), являются знаменитейшими английскими математиками XIX века, оставившими след во всех разветвлениях этой науки. Достаточно вспомнить их блестящие открытия (1849–1851) относительно прямых линий поверхностей третьего порядка, а равно и сделанное Кэйли приложение плюкеровских уравнений к исследованию в алгебраических кривых сложных сингулярностей (каждая из которых, как он показал, равна известному числу четырех простых сингулярностей). Но Кэйли и Сильвестер — прежде всего алгебраисты, и главная их заслуга заключается в том, что они обосновали новую отрасль науки, теорию инвариантов[252]. Кэйли следует считать настоящим творцом ее; он создал ее своими первыми мемуарами, печатавшимися в Кембриджском, математическом журнале (Cambridge Mathematical Journal) с 1845 года. Однако этот вопрос существовал уже в зародыше в работах Лагранжа и Гаусса, равно как и в новейших исследованиях Джорджа Буля (1815–1864), одного из своеобразнейших авторов, в частности известного своими исследованиями по символике обозначений и именно приложением ее к логике. Сильвестеру зато принадлежит, пожалуй, честь дальнейшей систематизации новой теории, и именно ему математика обязана большинством технических терминов, включая и самое слово инвариант.

В теории уравнений отметим трансцендентное решение уравнения пятой степени с помощью эллиптических функций, предложенное Эрмитом в 1858 году.

Исследования относительно сходимости рядов приобрели особенную важность с того времени, когда Копти и Абель показали недостаточную вообще строгость в вычислениях и доказательствах при употреблении рядов в XVIII веке. Жозеф Бертран открыл логарифмические признаки сходимости, которые долго считались постоянно решающими, но, в некоторых случаях не оправдываясь относительно рядов, в действительности сходящихся, должны бы считаться специальными. Первый общий признак, основанный на отношении двух рядом стоящих членов, был установлен Куммером (1810–1893) в выражении, вторая часть которого была впоследствии признана излишней.

Дирикле наука обязана первым строгим доказательством относительно изображения непрерывной функции тригонометрическим рядом Фурье; он полагал, однако, возможным представить в таком виде любую непрерывную функцию. Невозможность этого показал Риман в капитальном мемуаре, посвященном прямому исследованию функций, изображаемых тригонометрическим рядом. В том же мемуаре Риман указал необходимые и достаточные условия того, чтобы функция допускала интегрирование, и выяснил, что непрерывная функция может не всегда иметь производную.

Интегрирование линейных дифференциальных уравнений вступило на новый путь благодаря трудам, опубликованным в 1865 и 1868 годах Лазарем Фуксом (род. в 1825 г.).

Теория эллиптических функций подверглась важным усовершенствованиям, среди которых надлежит отметить пользование модулярными функциями, введенное Эрмитом в 1858 году. Рассмотрение абелевских функций и в частности их соединения с б-функциями, обобщенными Якоби, были развиты Розенгайном (1816–1887), Борхартом (1817–1880) и Риманом. Этот последний пытался также обосновать на новом принципе (который он окрестил именем Дирикле) общую теорию функций комплексной переменной, а для рассмотрения различных форм прерывности изобрел знаменитые так называемые римановские поверхности, образуемые различными, хотя и совпадающими плоскостями.

По теории чисел отметим лишь труды Стефена Смита[253] (1826–1883), Куммера, который ввел понятие идеальных чисел, и Дедекиида (род. в 1831 г.), которому удалось их устранить.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже