Около 1500 года до н. э. кочевники с севера завоевали Хараппскую цивилизацию, ассимилировав некоторые ее обычаи. Этот народ, арии, говорил на индоевропейском языке — санскрите. Именно на этом языке написаны древнейшие памятники письменности. На нем говорили о философии, астрономии, математике, грамматике, религии — обо всем, что было необходимо потом записать. На санскрите записывали гимны и речи, обряды и церемонии, формулы и заклинания, а также очень точные правила фонетики (чтобы правильно говорить), грамматики (чтобы правильно писать), стихосложения (чтобы научиться писать стихи), астрономии (чтобы определять подходящее время для жертвоприношений, вычислять положение Солнца и Луны в разных накшатрах — аналогах зодиакальных созвездий) и математики (чтобы определять форму и площадь алтарей, веди, и расположение агни — источников священного огня, чтобы жертвоприношения возымели силу). Здесь снова появляются письменные упоминания о теореме Пифагора — возможно, за несколько веков до рождения самого Пифагора.
Важнейшими математическими источниками ведической культуры являются шульба-сутры. Сутры — это особый жанр письма, максимально кратко выражающий суть высказывания, которое нужно передать. Для них были определены точные грамматические правила, подобные математическим законам. В шульба-сутрах в поэтической форме описываются алтари для жертвоприношений. Алтари квадратной и круглой формы, которые было легко соорудить, подходили для домашних ритуалов. Для публичных обрядов требовались более сложные алтари, состоящие из прямоугольников, треугольников, трапеций и других геометрических фигур. Один из этих алтарей имеет форму сокола, который готовится взлететь. Считалось, что если принести жертву на этом алтаре, то душа молящегося вознесется соколом прямо на небеса.
(источник: Джордж Гевергезе Джозеф «Павлиний хохолок»)
Одной из важнейших характеристик алтаря была его площадь. Чтобы рассчитать ее, требовались формулы, с помощью которых можно было бы преобразовать одну геометрическую фигуру в другую той же площади. Подобные формулы содержатся в шульба-сутрах. В шульба-сутре Бодхайяны, датированной 800–600 годами до н. э., содержится формулировка теоремы Пифагора, методы вычисления квадратного корня из 2 (с точностью до пятого знака после запятой), а также описан ряд геометрических построений. Среди них — различные решения задачи о квадратуре круга (приближенные) и о построении многоугольников, чья площадь равна сумме или разности площадей двух других многоугольников. Для верного выполнения ритуалов тщательное соблюдение форм и размеров алтарей было столь же важно, как и безошибочное произношение мантр. Позднее Апастамба написал шульба-сутры на те же темы, что и Бодхайяна, но более подробные. Катьяяна создал шульба-сутры, немного дополнявшие предыдущие. Оба эти автора писали в более древнем стиле по сравнению с тем, что описал грамматик Панини в IV веке до н. э.
Бодхайяна точно изложил теорему Пифагора: «Веревка (шульба), натянутая по диагонали квадрата, образует фигуру вдвое большей площади, чем исходный квадрат». Катьяяна приводит более общий случай: «Веревка [натянутая вдоль диагонали и по длине равная] диагонали прямоугольника образует фигуру той же площади, что и образованная горизонтальной и вертикальной сторонами».
Эти знания позволяли строить ведические алтари с исключительной точностью. В качестве примера можно привести так называемый алтарь смасана, на котором богам подносился одурманивающий напиток сома. Чтобы жертвоприношения возымели нужный эффект, размеры основания алтаря должны были точно соблюдаться.
В шульба-сутре Апастамбы приводились точные указания по постройке этого алтаря. Джордж Гевергезе Джозеф изложил эти указания в современной нотации так:
Используя веревку, отметьте
Отметьте на этой линии точки
Проведите перпендикуляры в точках
Зная, что треугольники