В этой ситуации Мюррей Гелл-Манн и Джордж Цвейг совершили большой прорыв в теории сильного взаимодействия, предложив кварковую модель. Они показали, что закономерности в массах, времени жизни и спинах адронов встали бы на свои места, если бы вы представили, что адроны состоят из нескольких более мелких объектов, которые Гелл-Манн назвал кварками. Десятки адронов можно было бы по крайней мере приблизительно понимать как различные комбинации, составленные всего из трех сортов
Изначальные правила представляли собой импровизацию, подогнанную под наблюдения, и были несколько странными. Они определили то, что называется кварковой моделью. Согласно ей существует только две основные структуры адронов.
Согласно кварковой модели, большое разнообразие адронов зависит не столько от того, какие фрагменты вы складываете вместе, сколько от того, как именно вы их складываете. Если конкретно, то данный набор кварков может быть организован на различных пространственных орбитах с выровненными по-разному спинами примерно так же, как пары или тройки звезд могут быть связаны друг с другом действием силы тяжести.
Существует принципиальная разница между субмикроскопическими «звездными системами» кварков и их макроскопическими аналогами. В то время как макроскопические солнечные системы, управляемые законами классической механики, могут иметь всевозможные размеры и формы, их микроскопические версии этого не могут. Для микроскопических систем, которые подчиняются законам квантовой механики, существуют ограничения, касающиеся разрешенных орбит и направлений спинов[7] Мы говорим, что система может находиться в различных квантовых
(Признание и анонс: я привожу здесь несколько неаккуратное объяснение, чтобы сразу не обременять вас слишком большим количеством подробностей. Согласно современной квантовой механике, правильным способом является описание состояния частицы в терминах ее волновой функции, которая описывает вероятность ее нахождения в том или ином месте, а не в терминах орбиты, по которой она движется. Мы поговорим об этом подробнее в главе 9. Изображение орбиты представляет собой пережиток так называемой старой квантовой механики. Она полезна в качестве визуализации, но непригодна для точной работы.)
Использование кварков для понимания адронов подобно использованию электронов для понимания атомов. Электроны в атоме могут иметь орбиты различных форм и выстраивать спины в разных направлениях. Таким образом, атом может находиться в разных состояниях и иметь разную энергию. Изучению возможных состояний посвящена обширная тема, известная как атомная спектроскопия. Мы используем ее, чтобы выяснять, из чего состоят далекие звезды, проектировать лазеры и решать многие другие задачи. Поскольку атомная спектроскопия имеет отношение к кварковой модели и чрезвычайно важна сама по себе, давайте обсудим эту тему подробнее.
Горячий газ, как в пламени или в звездной атмосфере, содержит атомы в различных состояниях. Даже в атомах с одинаковыми ядрами и с одним количеством электронов электроны могут находиться на разных орбитах, или их спины могут ориентироваться по-разному. Эти состояния имеют разные энергии. Состояния с высокой энергией могут переходить в состояния с меньшей энергией, что сопровождается излучением света. Поскольку энергия в целом сохраняется, энергия испускаемого фотона, которую выдает его цвет, кодирует разность энергий между начальным и конечным состояниями. Каждый сорт атомов имеет свою особенную палитру. Атомы водорода излучают один набор цветов, атомы гелия — совершенно другой и т.д. Физики и химики называют этот набор цветов