Читаем Тонкая физика. Масса, эфир и объединение всемирных сил полностью

Эта цитата служит в качестве подходящего представления прародителя всей Сетки — метрического поля.

Давайте начнем с чего-нибудь простого и знакомого — с карты мира. Поскольку карты плоские, в то время как то, что они отображают — поверхность Земли — является (примерно) сферическим, очевидно, карты требуют интерпретации. Существует множество способов создать карту, представляющую геометрию поверхности, которую она описывает. Все используют одну и ту же базовую стратегию. Самое главное — наложить сетку координат для задания локальной геометрии. Если более конкретно, то на каждом маленьком участке карты вы определяете, какое направление соответствует северу, а какое — востоку (юг и запад, разумеется, будут противоположными направлениями). Вы также указываете в каждом направлении, какой интервал на карте соответствует миле — или километру, или световой миллисекунде, или любой другой единице — на Земле.

Например, на картах, основанных на стандартной проекции Меркатора, север соответствует вертикали, а восток — горизонтали. Затем поверхность Земли можно вписать в прямоугольник. «Путешествуя по миру» с запада на восток, вы движетесь по горизонтали от одного края карты к другому вне зависимости от того, следуете вы по экватору или по полярному кругу. Поскольку протяженность экватора гораздо больше, чем протяженность полярного круга, карта на первый взгляд создает искаженное впечатление: полярные области кажутся гораздо большими, чем они есть на самом деле. Однако сетка позволяет вам определить расстояния правильно. В полярных областях вы должны использовать линейки большего размера! (Прямо на полюсах все становится очень странно. Вся верхняя граница карты соответствует одной точке на Земле, а именно Северному полюсу, а вся нижняя граница соответствует Южному полюсу.)

Вся информация, необходимая для восстановления геометрии поверхности Земли на основе карты, содержится в легенде карты[30] Например, вот как вы можете указать, что карта описывает сферу. Сначала выберите точку на карте. Затем для каждого направления отмерьте фиксированное расстояние r от контрольной точки (следуя легенде) и установите точку. Места на карте, отмеченные точками, соответствуют всем местам на Земле, которые располагаются на расстоянии r от контрольной точки. Соедините точки. В общем случае, если ваша карта построена в проекции Меркатора, фигура, которую вы получите на карте, не будет похожа на круг, несмотря на то что она представляет собой круг на Земле. Тем не менее вы можете использовать эту карту для измерения длины окружности на Земле, которой соответствует данная фигура. И вы обнаружите, что эта длина будет меньше 2πr. (Для экспертов: она будет равна R sin (2πr / R), где R — радиус Земли.) Если карта представляет плоскую поверхность, что может не быть очевидным, если вы используете искаженную сетку, то вы получите ровно 2πr. Вы также можете обнаружить, что длина окружности превышает 2πr. В этом случае вы понимаете, что ваша карта описывает седлообразную поверхность. Сферы, естественно, имеют положительную кривизну, плоские поверхности — нулевую, седлообразные — отрицательную кривизну.

Несмотря на значительное усложнение визуализации, те же идеи применимы и к трехмерному пространству. Вместо координатной сетки для описания геометрии на плоском листе можно рассмотреть координатные сетки, которые заполняют трехмерную область. Такие составные «карты» содержат (в виде слоев) своего рода двумерные карты, которые мы только что обсуждали, а также указания для совмещения этих слоев. Они описывают искривленные трехмерные пространства.

Поэтому вместо того, чтобы работать непосредственно со сложными трехмерными формами, которые (в лучшем случае) крайне сложно визуализировать, мы можем работать в обычном пространстве, используя координатные сетки. Работать с этими картами, не жертвуя какой-либо информацией.

Координатная сетка для описания локальной геометрии в научной литературе называется метрическим полем. Карты учат нас тому, что геометрия поверхностей или искривленных пространств большей размерности эквивалентна сетке, или полю, содержащему инструкции по локальному заданию направлений и измерению расстояний. Лежащее в основе «пространство» карты может представлять собой матрицу из точек или даже массив регистров в компьютере. При правильной координатной сетке, или метрическом поле, любая из этих абстрактных структур может хорошо представлять сложную геометрию. Картографы и мастера компьютерной графики являются экспертами в использовании этих возможностей.

Перейти на страницу:

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг