Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шредингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре. (Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов.
Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берется масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
Часто задаваемые вопросы
Разберем два отличных вопроса, которые люди часто задают мне на моих публичных лекциях о происхождении массы. Если они возникли и у вас, примите мои поздравления! Эти вопросы касаются основных сложностей, связанных с возможностью объяснения массы в терминах энергии.
Вопрос 1: если
Ответ 1: короткий ответ заключается в том, что уравнение
Более подробный ответ можно найти в приложении A: «Частицы имеют массу, а мир — энергию».
Вопрос 2: как может что-то состоящее из не имеющих массы строительных блоков испытывать воздействие гравитации? Разве Ньютон не говорил нам о том, что сила тяжести, действующая на тело, пропорциональна его массе?
Ответ 2: в своем законе тяготения Ньютон действительно сказал, что действующая на тело сила тяжести пропорциональна его массе. Однако Эйнштейн в своей более точной теории гравитации, общей теории относительности, сказал нечто другое. Всю эту историю довольно сложно описать, и я не буду пытаться сделать это в данной книге. Очень грубо говоря, там, где Ньютон говорит, что сила пропорциональна
На самом деле сам свет является наиболее ярким примером. Частицы света, фотоны, имеют нулевую массу. Тем не менее свет отклоняется под действием силы тяжести, так как фотоны имеют ненулевую энергию, а сила тяжести воздействует на энергию. Действительно, одно из самых ярких подтверждений общей теории относительности — это отклонение лучей света Солнцем. В данной ситуации гравитация Солнца воздействует на не имеющие массы фотоны.
Если продолжить эти размышления, то одним из самых впечатляющих следствий общей теории относительности станет возможность представить себе объект с такой сильной гравитацией, что она изменяет траекторию фотонов. И настолько сильно, что частицы движутся назад, даже если сначала они двигались вперед. Такой объект представляет собой ловушку для фотонов. Ни одна частица света не может из нее выбраться. Это черная дыра.
Глава 4. Состав материи
Из чего состоит мир? Мы объясним происхождение 95 % массы материи из чистой энергии. Для достижения такой точности нам придется быть очень конкретными. В данной главе мы расскажем, чем является и чем не является обычная материя.
«Обычная» материя — это то, что мы изучаем в химии, биологии и геологии. Материал, который мы используем для создания вещей, и то, из чего состоим мы сами. Обычная материя — это в том числе то, что видят астрономы, глядя в свои телескопы. Планеты, звезды и туманности состоят из того же вещества, которое мы находим и исследуем здесь, на Земле. Это величайшее открытие астрономии.