Наши существующие уравнения Центральной теории не поддерживают суперсимметрию, но их можно расширить так, чтобы они ее поддерживали. Новые уравнения предсказывают существование многих новых частиц, ни одна из которых еще не наблюдалась. Необходимо постулировать некоторую форму сверхпроводимости Сетки, чтобы сделать тяжелыми многие из этих частиц. Хорошая новость заключается в том, что новые частицы в их виртуальной форме поддерживают успешное количественное объединение сил, как описано в главе 20. Одна из новых частиц могла бы стать хорошим кандидатом на звание источника темной материи. Ускоритель БАК должен быть достаточно мощным, чтобы произвести некоторые из новых частиц, если они существуют.
СЦЛУ
Сокращенное название Стэнфордского центра линейного ускорителя, средства, которое сыграло ключевую роль в создании Центральной теории. Здесь Фридман, Кендалл, Тейлор и их соратники сфотографировали при высоком разрешении и короткой выдержке внутреннюю структуру протонов, что открыло путь к КХД. Ускоритель электронов длиной более трех километров, который они использовали, фактически представлял собой ультрастробоскопический наномикроскоп.
Темная материя
Астрономические наблюдения показывают, что большая часть массы Вселенной, около 25 % от общей массы, распределена гораздо более равномерно по сравнению с обычным веществом и совершенно прозрачна. Галактики, состоящие из обычного вещества, окружены обширными ореолами темной материи. Вес этого ореола примерно в пять раз превышает вес видимой галактики. Сгустки темной материи могут также существовать сами по себе. Интересными кандидатами на звание источника темной материи являются вимпы (от англ. WIMP, Weakly Interacting Massive Particle — слабо взаимодействующие массивные частицы), связанные с суперсимметрией, или аксионы. См. также: Суперсимметрия, Аксион.
Темная энергия
Астрономические наблюдения свидетельствуют, что большая часть массы Вселенной, около 70 % от ее общей массы, распределена равномерно и совершенно прозрачна. Другие независимые наблюдения указывают на ускоряющееся расширение Вселенной, которое мы можем приписать отрицательному давлению. Величины и относительный знак этих эффектов согласуются с хорошо темперированным уравнением. Таким образом, сделанные до сих пор наблюдения могут быть описаны с помощью космологического члена. Тем не менее логически возможно, что будущие наблюдения покажут: плотность или давление не являются постоянными или
не связаны хорошо темперированным уравнением. Термин «темная энергия» был введен для того, чтобы избежать предубеждения относительно этих вопросов.
Теория суперструн
Совокупность идей для расширения законов физики. Эта теория вдохновила блестящих ученых на блестящую работу, результатом которой стали важные приложения к чистой математике. В настоящее время теория суперструн не предоставляет уравнений, описывающих конкретные природные явления. В частности, Центральная теория, которая точно описывает столь многое в физическом мире, не является приближением к теории суперструн.
Идеи теории суперструн не обязательно являются несовместимыми с Центральной теорией или с идеями объединения, изложенными в этой книге. Однако обсуждаемые здесь идеи исторически не возникли из теории суперструн, а также не были выведены из нее. Их происхождение, как я подробно объяснил, является отчасти эмпирическим, а отчасти математическим/эстетическим.
Узел
Пространственно-временная точка, в которой взаимодействуют частицы (реальные или виртуальные). В диаграммах Фейнмана узлы — это места, где встречаются три или более линий. Теории взаимодействий частиц подчиняются правилам, описывающим возможные типы узлов, а также связанным с ними математическим факторам. В технической литературе узлы обычно называются
Уравнение Дирака
Предложенное Полем Дираком в 1928 году уравнение является модификацией уравнения Шрёдингера для квантово-механической волновой функции электронов. Оно предназначено для согласования квантовой механики с буст-симметрией (то есть со специальной теорией относительности). Уравнение Дирака, грубо говоря, в четыре раза больше уравнения Шрёдингера, точнее, это набор из четырех взаимосвязанных уравнений,
управляющих четырьмя волновыми функциями. Четыре компонента уравнения Дирака автоматически включают в себя спин (направленный вверх или вниз) как для частиц, так и для античастиц, что соответствует четырем компонентам. Несколько измененное уравнение Дирака также используется для описания кварков и нейтрино. В современной физике мы интерпретируем уравнение Дирака как уравнение для поля, которое рождает и уничтожает электроны (или, что то же самое, уничтожает и рождает позитроны), а не как уравнение для волновой функции отдельных частиц.
Уравнение Шредингера