124
. Каждое отдельное конечное протяжение, которое может служить предметом нашего мышления, есть125
. Тот, чей ум находится под господством учения об абстрактных общих идеях, легко может быть убежден в том, что (как бы ни мыслить об идеях ощущений)§126-156
126
. Было замечено в другом месте (§15 Введ[ения]), что теоремы и доказательства геометрии касаются общих идей, причем было объяснено, в каком смысле это следует понимать, а именно в том, что отдельные линии и фигуры в чертеже предполагаются заменяющими бесчисленное множество других линий и фигур различной величины, или, иными словами, геометр рассматривает их, отвлекая от них величины, что подразумевает не то, что он образовал абстрактную идею, а только то, что он не заботится о величине, в частности велика ли она или мала, но считает это безразличным для доказательства. Отсюда следует, что о линии, имеющей на чертеже всего один дюйм длины, надо говорить так, как будто она содержит девять тысяч частей, поскольку она рассматривается не сама по себе, но как общая; но она обща лишь по значению, поскольку она собой представляет бесчисленные линии, большие, чем она, в которых можно различить десять тысяч и более частей, хотя они могут быть не длиннее дюйма. Таким путем свойства обозначенных линий по весьма обычному приему переносятся на знак и потому по заблуждению как бы мыслятся принадлежащими ему в силу его собственной природы.