В термоядерных реакторах будет сжигаться тяжелый водород (дейтерий и тритий). Главное значение в будущем приобретут термоядерные реакторы, работающие на одном лишь чистом дейтерии. Может показаться, что дейтерий — слишком редкая разновидность водорода, ведь на каждые шесть тысяч ядер обычного водорода приходится лишь одно ядро дейтерия. Но и при таком соотношении один стакан обычной воды по заключенной в ней энергии будет равноценен приблизительно 100 литрам нефти.
Академик И. В. Курчатов привел в одной из своих статей потрясающие цифры: в ближайшие пятнадцать лет ежегодная добыча угля и нефти в нашей стране достигнет в сумме около миллиарда тонн. Только 400 тонн дейтерия потребовалось бы для замены этого количества угля и нефти! Еще двадцать лет назад это количество дейтерия могло показаться непомерно большим и труднодостижимым. Тогда со страшным трудом удавалось добывать граммы тяжелой воды, содержащей дейтерий. Теперь положение другое. У нас создано промышленное производство дейтерия. На одном из заседаний Женевской конференции советские ученые М. И. Малков, Г. Б. Зельдович и другие рассказали об одном из эффективных путей технологии производства дейтерия.
Дейтерий добывают путем перегонки жидкого водорода, получаемого, например, на химических заводах попутно с производством аммиака. Технологический процесс ведется в температурах, приближающихся к холоду космических пространств. На одну тонну выработанного аммиака можно получить стакан тяжелой воды. Стоимость дейтерия как горючего уже сейчас составляет менее одного процента стоимости угля.
Легче всего осуществить управляемую термоядерную реакцию на смеси из равных частей дейтерия и трития. Однако трития в природе ничтожно мало. Тритий искусственно получают путем облучения металла лития нейтронами. Пока это — дорогое производство. Но советскими учеными предложен остроумный выход: ведь при работе термоядерных установок будет выделяться огромный поток нейтронов. А что, если окружить реактор оболочкой из лития? Тогда под влиянием нейтронной бомбардировки литий начнет расщепляться на тритий и гелий. В ходе работы реактор будет сам для себя готовить ядерное топливо. Более того, запасы трития будут при этом непрерывно возрастать.
Хитроумные приборы выставки, подступившие к океану, — это прототипы грядущих термоядерных реакторов. Одна из американских моделей называется «Перхэпсатрон», что в переводе значит «возможнотрон».
Можно сказать, что все экспонируемые приборы в какой-то мере «возможнотроны»; они с большей или меньшей убедительностью демонстрируют лишь принципиальную возможность построения в будущем термоядерного реактора. Они так же относятся к своему грядущему потомку, как старинный эолипил Герона к современной паровой турбине, как сегнерово колесо к современному гидравлическому двигателю, как магнитные подковки и катушки Фарадея к современному электрогенератору, как грозоотметчик Попова к современной радиостанции.
Поразительно принципиальное сходство приборов, построенных антиподами на разных концах земли, за семью замками лабораторий, в обстановке глубочайшей секретности. И наивно полагать, что ученым удалось разгадать секреты друг друга. Они просто пытались проникнуть в одну общую тайну — великую тайну природы. Они порознь вели единоборство с природой и держались единственно возможной тактики: разгадать законы природы, подчиниться этим законам и тем самым подчинить природу себе. Их конечные выводы получились едиными, как едины законы природы.
Теперь стало возможно проследить перипетии мировой изобретательской и исследовательской мысли по дороге на океан.
Грандиозные успехи атомной энергетики, опирающиеся на деление тяжелых ядер, стали возможны благодаря беззаветной работе ученых, бескорыстно изучающих сердце атома. И мы вправе сказать, что к первому этапу атомной энергетики человечество проникло через узкие дверцы микромира.
Ко второму этапу атомной энергетики, опирающемуся на слияние легких ядер, привели бескорыстные исследования звездного неба, отвлеченные достижения астрофизики, изучающей жизнь колоссальных космических тел Вселенной. Человечество идет к термоядерной энергетике сквозь широкие ворота макромира. В кулуарах конференции шутят, что идеи термоядерной энергетики буквально свалились с небес. И в этом еще одна разгадка их единства. Ведь над русскими, англичанами, американцами — одно и то же небо.
Термоядерные реакции потому и называются так, что происходят при очень высоких температурах. При таких температурах материя, вещество, образует первозданный хаос из мятущихся электронов и голых атомных ядер, с которых совлечены электронные оболочки. Из подобного материала построены солнце, звезды, туманности. Это состояние вещества называется плазмой.
Плазма очень подвижна и живет своей сложной, прихотливой жизнью. Электрические заряды привносят в ее движение свои склонности и антипатии, а течения, вихри и струи плазмы, обладают капризными свойствами намагниченных током проводников.