Читаем Транзистор?.. Это очень просто! полностью

Н. — Вопрос движения зарядов. Ты сказал мне, что в полупроводнике электрический ток создается одновременно потоком электронов, идущих от отрицательного полюса к положительному, и перемещением дырок, двигающихся в обратном направлении от положительного полюса к отрицательному. Этим полупроводники отличаются от металлов, в которых электропроводность создается только движением электронов.

Л. — Совершенно верно. К этому следует еще добавить, что и движение дырок в конечном счете обусловливается перемещением электронов.

Н. — Но я не понимаю, почему ионизированные атомы, как доноры, так и акцепторы, сами не участвуют в движении электрических зарядов.

Л. — Я вижу, что тебя мучает, и ты бесспорно прав, задав этот вопрос. Однако это довольно просто: ионы не могут перемещаться, потому что они входят в состав кристаллической решетки и прочно привязаны к своим местам. До тех пор, пока тело остается твердым, его атомы остаются пленниками невидимых связей, которые удерживают их на месте. В жидкостях, в отличие от твердых тел, ионизированные атомы свободно перемещаются и при приложении внешнего напряжения создают ионную проводимость, называемую явлением электролиза, о котором тебе, бесспорно, говорили в школе на уроках физики.

Н. — Прекрасно! Отныне в своих рассуждениях я буду вправе не принимать в расчет ионизированные атомы и заниматься только электронами и дырками.

Л. — Это вполне законно, и я добавлю, что к счастью ионы в полупроводниках не перемещаются. В противном случае проводимость различных областей транзистора с течением времени могла бы изменяться, что сократило бы продолжительность его службы. Что касается электронов, то они непрерывно обновляются, потому что источник напряжения инъецирует их с одной стороны и отбирает с другой, что порождает новые дырки. Это означает, что мы не обнаружили никаких причин, ограничивающих срок службы транзисторов.



Эйнштейн был прав



Н. — Чудесно, но поговорим еще об электронах и дырках. Я хотел бы знать, как они сосуществуют, не нейтрализуя друг-друга. Ведь разноименные заряды взаимно притягиваются.

Л. — Подумай, Незнайкин, о колоссальных расстояниях (разумеется, в атомных масштабах), которые разделяют большинство этих частиц. Электрону удается пробежать путь, во много сотен раз превышающий расстояние между атомами. В человеческих масштабах в среднем это всего лишь десять тысячных миллиметра, но для электрона это космические расстояния. Ты понимаешь, что в этих условиях у него нег шансов встретить дырку, и в действительности электроны и дырки всегда сосуществуют.

Н. — Да, ты мне объяснил, что даже при нормальной температуре имеется известное тепловое движение, отрывающее электроны у многих атомов, чтобы бросить их в межатомное пространство.

Л. — В кубическом сантиметре «чистого» германия при обычной температуре имеется около двадцати пяти тысяч миллиардов свободных электронов и, естественно, столько же дырок, так как место, оставленное электроном, не что иное, как дырка. Эти пары носителей зарядов после определенной продолжительности жизни рекомбинируют, но все время создаются и новые пары, так что в кристалле удерживается статистическое равновесие процессов генерации и рекомбинации пар электрон — дырка.

Н. — А если германий не «чистый»? Если мы, например, введем в него примеси типа n?

Л. — B этом случае свободных электронов будет больше, чем дырок. Поэтому в материале типа и электроны называются основными носителями зарядов.

Н. — Я догадываюсь, что в полупроводнике типа р более многочисленны дырки и потому здесь они должны считаться основными носителями… Эйнштейн решительно был прав: все относительно.


Транзистор структуры р-n-р


Л. — Теперь, когда я удовлетворил твое любопытство, не можешь ли ты в свою очередь ответить мне на вопрос, который я задал в конце нашей прошлой беседы: как работает транзистор структуры р-n-р (рис. 28)?



Рис. 28.Распределение носителей зарядов (электронов и дырок) и ионизированных атомов в транзисторе структуры р-n-р до включения напряжений питания. На рисунке видны потенциальные барьеры, образованные ионами с разноименными зарядами.


Н. — Я думал об этом, и мне кажется, что я могу тебе ответить. В таком транзисторе в отличие от транзистора структуры n-р-n коллектор нужно сделать отрицательным по отношению к эмиттеру. Я должен тебе признаться, что это мне очень неприятно.

Л. — Почему же?

Н. — Потому что я всегда сравниваю транзистор с электронной лампой, и идея сделать анод отрицательным по отношению к катоду (ведь именно их роль выполняют соответственно коллектор и эмиттер) меня несколько разочаровывает. Тот факт, что база должна быть отрицательной по отношению к эмиттеру, радует мое сердце, так как я думаю, разумеется, о сетке.



Л. — Незнайкин, остерегайся таких сопоставлений, я уже говорил тебе об этом.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника