Именно этого стремятся достичь во всех связях между лампами, и это легко удается, так как входное сопротивление лампы бесконечно велико. В транзисторных же схемах мы стремимся передать максимальную мощность. Для достижения этой цели нужно, чтобы сопротивление нагрузки имело ту же величину, что и сопротивление источника. Однако на всех трех рассмотренных нами схемах входное и выходное сопротивления имеют весьма различные значения. Отсюда я делаю вывод, что необходимо согласовывать сопротивления с помощью трансформатора. Следовательно, единственным средством связи между транзисторами может быть трансформатор.
Л. — О непоседливая молодость! К сожалению, должен тебя огорчить. В транзисторной технике связь с помощью резисторов (точнее, резистивно-емкостная) тоже имеет право на существование. Можно даже вообще обойтись без каких-либо элементов связи, соединив непосредственно выход транзистора одного со входом транзистора другого каскада.
Н. — Как? Куском простой проволоки?
Л. — Вот именно. Однако продолжим все по порядку, и если ты уделяешь столько внимания трансформатору, начнем с него. Ты назвал только одно из его положительных качеств — он позволяет согласовать выходное сопротивление каскада с входным сопротивлением следующего каскада, т. е. добиться оптимальных условий передачи мощности, но есть и другие качества. Малое сопротивление провода его обмоток вызывает достаточно малое падение питающего напряжения, и поэтому можно пользоваться источниками питания с невысоким напряжением. И, что особенно важно для высокочастотных усилителей, выбором соответствующей связи с колебательными контурами можно добиться хорошей избирательности в каскадах высокой и промежуточной частоты. При этом можно не только подобрать требуемую степень связи между двумя транзисторами, но и добиться нужной полосы пропускания частот.
Н. — Ты видишь в трансформаторе только положительные качества, и я не могу понять, почему…
Л. — Как видно, я должен показать тебе и оборотную сторону медали. Прежде всего, какого бы прогресса не достигла миниатюризация, трансформатор занимает больше места, чем детали резистивно-емкостной схемы связи (по крайней мере на низких частотах, так как в блоках высокой и промежуточной частоты никакой вид связи не может конкурировать с трансформаторной). Кроме того, низкочастотный трансформатор оказывается дороже, чем резисторы и конденсаторы.
Н. — Одним словом, трансформатор приносят в жертву.
Л. — Фирмы, выпускающие транзисторные приемники, не филантропы, и поскольку покупатель требует все более портативных приемников, то, отказываясь от трансформаторов, они получают двойную экономию. Впрочем, при применении трансформатора возникает еще одна трудность, особенно когда его устанавливают на входе усилителя с большим коэффициентом усиления.
Н. — Какая же именно?
Л. — На его обмотки наводятся и затем усиливаются паразитные сигналы, которые могут стать причиной помех. Это исключает использование трансформатора там, где существуют сильные поля помех.
Н. — Вот в скольких грехах уличен мой бедный трансформатор!.. Могу ли я все же знать, как его включают, если соображения экономии и наличие помех не исключают возможности применения трансформатора?
Л. — Трансформаторная схема связи транзисторов не отличается от аналогичной ламповой схемы. Как ты видишь, я изобразил здесь (рис. 88) два транзистора, включенных по схеме с ОЭ. Трансформатор
Н. — Я вижу, что напряжения смещения на базы подаются от делителей напряжения
Рис. 88.
Л. — Браво, Незнайкин! Твоя прекрасная память совершенно не пострадала от гриппа.
Н. — Рассматривая твою схему, я спрашиваю себя, как ты будешь регулировать громкость звука?
Л. — Здесь я не предусмотрел регулирования усиления. Его можно было бы осуществить с помощью регулируемой отрицательной обратной связи. Но я считаю такой метод нежелательным. Прежде всего, он не позволяет снизить усилие до нудя, чтобы достигнуть полной тишины. А кроме того, одновременно с изменением громкости звука изменяется коэффициент искажений, причем он достигает максимума именно при наибольшей громкости звучания.