Мы знаем множество примеров такого рода физических закономерностей; ученые прошлого называли их “правилами”. Правило Аллена, сформулированное в 1877 году Джоэлом Асафом Алленом, гласит, что теплокровные животные, живущие в условиях более холодного климата, имеют более короткие придатки тела (конечности, уши, носы и др.), чем те, которые живут в условиях более теплого климата. Объяснение заключается в потере тепла: животные с более длинными придатками теряют больше тепла, чем животные с короткими придатками. А в соответствии с правилом Бергмана, названным в честь Карла Бергмана в 1844 году, в более холодном климате в среднем живут более крупные животные, чем в теплом. Это тоже связано с потерей тепла, поскольку мелкие животные имеют сравнительно большую по отношению к массе поверхность тела, через которую уходит тепло. Правила Аллена и Бергмана в целом справедливы для разных видов животных, обитающих в разных местах.
Но множественность может возникать и в другом варианте. Дарвин признавал, что в популяции не бывает двух одинаковых существ и что какие-то изменения могут позволить организму более успешно существовать в его среде обитания – быть здоровее и производить более многочисленное потомство. Эти различия – основа эволюции за счет естественного отбора: пока в популяции существуют вариации признаков и какие-то из них влияют на успешность существования организмов в их среде, неизбежно будут происходить эволюционные изменения. Естественный отбор действует только при условии разнообразия популяции. Если между особями нет различий, нет и эволюции. Но что, если вариации каким-то образом предопределены? Что, если генетические и эволюционные механизмы, ответственные за построение тел и органов, легче создают одни варианты структуры, чем другие, или вообще не имеют альтернатив? Если это так, знание законов построения органов животных в процессе эмбрионального развития может помочь предсказать их вариации в популяции и, как следствие, вероятные пути их эволюции.
Холодные ноги
Окончив обучение в Гарварде, я отправился на Запад, в Калифорнийский университет в Беркли, чтобы учиться в одном из знаменитых музеев зоологии и палеонтологии. Через несколько недель заразительный энтузиазм Дэвида Уэйка в отношении саламандр охватил и меня, и я начал разрабатывать проект, который мог бы выполнять в сотрудничестве с его группой. На самом деле я перебрался в Калифорнию не только чтобы работать в музеях и заняться саламандрами, но и чтобы сменить климат. Пять лет в Кембридже, в Массачусетсе, и летние полевые работы в Гренландии и Канаде подтолкнули меня к тому, чтобы покинуть тьму и холод и отогреться под калифорнийским солнцем.
Но мне не суждено было обрести солнечное блаженство. В момент моего прибытия в Беркли установился один из самых холодных сезонов за последние годы. И вскоре я узнал, что ничто, даже жизнь в палатке в Гренландии, не может сравниться с промозглостью Калифорнии в период холодов. Теплоизоляции не хватало ни домам, ни людям, включая меня. В городе промерзли трубы, воду давали по часам. Я тогда даже не подозревал, что эти калифорнийские холода повлияют на мои представления об истории жизни.
Однажды во время этого холодного сезона я зашел в лабораторию Уэйка, просто чтобы согреться и набрать немного воды. Уэйк как раз закончил говорить по телефону с коллегой из Службы национальных парков на мысе Пойнт-Рейес. Холода сильно сказались на состоянии пресноводных озер парковой зоны – они промерзли в первый раз за несколько десятилетий. Животные были так же плохо подготовлены к похолоданию, как и люди. Звонивший сообщил Уэйку, что тысячи саламандр в прудах замерзли до смерти, и парковые службы хотели узнать, не нужны ли они для коллекции зоологического музея. Животные все равно погибли от природной катастрофы – может быть, наука извлечет из них какую-то пользу?
Так у нас оказалось более тысячи саламандр для изучения. В Гарварде я исследовал конечности саламандр и развитие их кистей и стоп на эмбриональных стадиях. Учитывая мой интерес, мы разработали план исследования стоп саламандр для анализа их скелета. Поскольку у каждой саламандры две стопы, мы могли проанализировать около двух тысяч стоп.
Мое возбуждение по поводу двух тысяч стоп саламандр вовсе не абсурдно. Я учился у Гулда и хотел проверить, в какой степени эволюция случайна или неизбежна. Мы наблюдаем множественность повсюду – в структуре языка и в вырождении, как у саламандр, так и у ракообразных. Вообще говоря, чем больше мы ищем, тем больше находим. Уэйк обнаружил, что стопы саламандр эволюционировали весьма специфическим образом, причем, как и в отношении языка, у разных видов эволюция шла в одинаковом направлении независимым образом.