Первый из этих генных драйвов (изменение окраски) кажется безобидным, а второй (устойчивость к малярии) выглядит полезным[183]
. Но вот и третий пример. Работая независимо от калифорнийских ученых, британская команда исследователей – в ее состав входит и биолог Остин Берт, разработавший саму концепцию генного драйва, – создала легко передающиеся генные драйвы, распространяющие гены стерильности самок малярийных комаров[184]. Поскольку эта стерильность – рецессивный признак, гены должны были стремительно распространиться в популяции, а их частота должна была повышаться до тех пор, пока у каждой самки не окажется по две соответствующие копии, – и в этот момент наступит коллапс популяции. Вместо того чтобы избавиться от малярии, генетически изменив комаров таким образом, что они больше не были способны переносить заболевание, на этот раз был использован более грубый инструмент – истребление популяции, лишенной способности к размножению. Если бы этот подход был применен к популяциям комаров в природе, это могло бы в конце концов привести к полному уничтожению данного вида.Это не первый случай, когда ученые обращаются к генной инженерии для снижения численности насекомых. Обычная практика, использующаяся уже несколько десятилетий, – выпуск в природу стерилизованных самцов; с помощью этой технологии фактически был уничтожен ряд вредителей сельского хозяйства в Северной и Центральной Америке[185]
. Другой подход, который разрабатывает британская компанияВ отличие от описанных выше, генные драйвы с CRISPR способны к самоподдержанию; поскольку характер наследования, по всей видимости, оказывается сильнее естественного отбора, модифицированные насекомые распространяются и передают свои дефектные признаки без ограничений. Эта устойчивость и делает генные драйвы такими мощными – и потенциально опасными – инструментами. Подсчеты показывают, что, если бы одна дрозофила из лаборатории в Сан-Диего в ходе первых экспериментов с генным драйвом оказалась на воле, она “раздала” бы кодирующие CRISPR гены (вместе с желтым цветом тела) 20–50 % всех плодовых мушек в мире[187]
.Ученые, занимающиеся генными драйвами с использованием CRISPR, должны тщательно взвешивать риски перед каждым новым экспериментом; им необходимо разработать методические указания, обеспечивающие безопасность будущих исследований[188]
. Возможно, наиболее очевидная гарантия того, что генный драйв случайно не вырвется в природу, – это жесткое ограничение: физические барьеры, отделяющие организмы от окружающей среды, и экологические барьеры между естественным ареалом конкретного организма и географическим положением лаборатории. На недавней конференции, где Итан Бир представлял результаты своих исследований, он показывал слушателям фотографии систем и процедур безопасности, призванных предотвратить случайный “побег” подопытных насекомых. Но ученые также предложили набор процедур для инактивации вышедших из-под контроля генных драйвов и на случай, если все принятые меры предосторожности окажутся неэффективными. Одна из таких процедур называется обратный драйв (Даже при самом тщательном планировании экспериментов и соблюдении мер предосторожности при их выполнении мы не можем предусмотреть все опасности для окружающей среды, потенциально исходящие от генного драйва, и не в состоянии свести к нулю вероятность того, что генный драйв выйдет из-под контроля и нарушит тонкий баланс какой-либо экосистемы. Эти риски были отражены в недавнем совместном докладе Национальной академии наук, Национальной инженерной академии и Национальной академии медицины США[190]
, в котором были одобрены лабораторные (и некоторые полевые) исследования, проводящиеся в настоящее время, но было рекомендовано не выпускать генные драйвы в окружающую среду.