Редактирование генома может решить эту проблему, позволяя пациентам одновременно играть роль и реципиента, и донора стволовых клеток. Если врач сможет изолировать стволовые клетки из красного костного мозга пациента, “починить” мутантные гены с помощью CRISPR, а затем вернуть эти отредактированные клетки пациенту, то не придется думать о доступности донорского материала и о риске иммунного конфликта между телом пациента и пересаженными клетками. Многочисленные исследовательские коллективы уже убедительно показали, что геномы клеток пациентов можно с высокой точностью репарировать в лаборатории и что эти отредактированные клетки производят заметные количества здорового гемоглобина; ученые даже показали, что отредактированные клетки человека могут функционировать в теле иммунокомпрометированных (то есть имеющих ослабленный иммунитет) мышей. Сегодня исследователи и в научных учреждениях, и в коммерческих компаниях работают над тем, чтобы сделать эту процедуру доступной для пациентов.
Есть веская причина для оптимизма по поводу клинических испытаний с редактированием генома ex vivo
, учитывая недавние успехи на смежном поле генной терапии ex vivo же. (Вспомните, что при редактировании генов репарация мутантных копий происходит прямо в геноме, в то время как при генной терапии в ДНК вводятся новые, здоровые гены.) Биотехнологическая компания Bluebird Bio разрабатывает продукт для лечения бета-талассемии и серповидноклеточной анемии посредством вставки новых генов бета-глобина в стволовые клетки крови, а GlaxoSmithKline сходным образом создала эффективное средство для генной терапии, которое излечивает тяжелый комбинированный иммунодефицит путем вставки недостающего гена в геном. В обоих случаях общая стратегия вмешательства одинакова: изъять клетки пациента, исправить их в пробирке, а затем вернуть в тело пациента. Впрочем, редактирование генома с большой вероятностью будет более безопасным, поскольку оно вносит настолько мало изменений в геном, насколько это возможно.Самое первое клиническое испытание редактирования генов ex vivo
показало, насколько перспективна эта процедура и как много она умеет. По иронии судьбы мишенью в тот раз была вовсе не генетическая болезнь, а вирус иммунодефицита человека (ВИЧ). И хотя протокол этого клинического испытания был разработан до того, как технология CRISPR появилась на свет, – в нем использовалась технология нуклеаз с цинковыми пальцами (ZFN), описанная в первой главе, – его успех означает, что с помощью редактирования генома можно будет бороться с пандемией СПИД, а также лечить множество генетических заболеваний.Вы не поверите, но некоторые люди от природы невосприимчивы к ВИЧ. У этих счастливчиков не хватает тридцати двух “букв” ДНК в гене, кодирующем белок CCR5, расположенный на поверхности белых кровяных телец – тех самых клеток, что образуют костяк иммунной системы. Белки CCR5 – класс элементов на поверхности клетки, на которые заякоривается частица ВИЧ на первых стадиях инфицирования. Описанная специфическая 32-буквенная делеция приводит к тому, что синтез молекулы белка CCR5 обрывается и она не выходит на поверхность клетки. Не имея рядом белка CCR5 для присоединения, ВИЧ не может заражать клетки.
У людей африканского и азиатского происхождения 32-буквенная делеция в гене CCR
5 практически не встречается, но она довольно значительно распространена у европейцев; 10–20 % европеоидов несут одну копию мутантного гена, а гомозиготы – те, у кого таких копий две, – полностью невосприимчивы к ВИЧ. Приблизительно от 1 до 2 процентов европеоидов по всему миру (большинство из них из Северо-Восточной Европы) посчастливилось иметь такой признак[201]. Эти люди без полнофункционального CCR5 во всех остальных аспектах абсолютно здоровы и даже имеют меньший риск развития определенных воспалительных заболеваний[202]; нехватка указанного белка не приводит ни к каким побочным эффектам. Фактически единственный известный минус отсутствия белка CCR5 – повышенная восприимчивость к вирусу лихорадки Западного Нила[203].Неудивительно, что фармацевтическая индустрия направила громадное количество ресурсов на разработку лекарств, разрывающих связь между ВИЧ и CCR5, в надежде защитить людей, не вошедших в число счастливчиков с 32-буквенной делецией в геноме. Но недавние исследования убедительно продемонстрировали, что мы можем достичь того же самого – то есть предотвратить связывание ВИЧ с CCR5, – удалив сам ген CCR
5. Множество исследовательских коллективов уже начали попытки сделать это с помощью CRISPR, по крайней мере на клетках в чашках Петри. Но пальма первенства за первое успешное редактирование гена CCR5 у людей принадлежит технологии ZFN, разработанной в калифорнийской компании Sangamo Therapeutics.