Желая узнать больше об этих странных участках бактериальной ДНК, я спросила Джилл, каковы их биологические функции, но, к моему разочарованию, Джилл ответила, что ничего об этом не знает. Однако в ее лаборатории обнаружили важную зацепку[45]. Последовательности ДНК бактерий природных популяций показали, что буквально каждая клетка в них содержит уникальный вариант CRISPR, поскольку разделяющие регулярные повторы промежутки у каждой клетки отличаются. Это было совершенно необычно, поскольку все остальные участки ДНК у этих клеток практически совпадали. Джилл поняла, что CRISPR, скорее всего, эволюционируют быстрее всех остальных областей генома, а это указывает на то, что их функция – быстро меняться или адаптироваться в ответ на некий вызов из внешней среды, с которым сталкиваются клетки.
Годами ранее испанский профессор Франсиско Мохика в своей новаторской работе[46] обнаружил те же повторы у множества совершенно не родственных друг другу видов, включая архей – одноклеточных организмов, которые, как и бактерии, не имеют ядер. (Бактерии, археи – их собирательное название “прокариоты” – и эукариоты представляют собой три домена, включающих все формы жизни на Земле.) CRISPR, по словам Джилл, обнаружили в половине бактериальных геномов, секвенированных на тот момент, и почти во всех геномах архей. Выходило, что кластерные палиндромы – наиболее распространенный тип повторяющихся последовательностей ДНК у всех прокариот.
Эти факты заставили меня буквально задрожать от любопытства: если CRISPR присутствует у такого большого количества видов, то с высокой вероятностью природа использует этот инструмент для чего-то важного.
Я внимательно слушала, а тем временем Джилл вытащила из стопки бумаг три статьи, все 2005 года[47], и оживленно пересказала их суть. Три коллектива исследователей (один из них – под руководством Мохики) независимо друг от друга обнаружили, что многие спейсеры CRISPR – те фрагменты ДНК, что встроены между повторяющимися последовательностями, – точно совпадают с ДНК известных бактериофагов. Что еще интереснее, возникало ощущение, что между числом последовательностей ДНК в бактериальной CRISPR, совпадающей с вирусной ДНК, и числом вирусов, способных поразить эту бактерию, существует обратная зависимость: чем больше совпадений, тем ниже вероятность инфицирования. Собственное новаторское исследование Джилл[48], в котором геномы целых микробных сообществ были восстановлены секвенированием небольших, перекрывающих друг друга фрагментов ДНК и их сборкой в одну более длинную последовательность, также показало, что многие разделенные регулярными промежутками последовательности на содержащем CRISPR участке хромосомы соответствовали последовательностям вирусной ДНК, обнаруженным в окружающей бактериальные сообщества среде.
В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.
Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина[49], она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” (