Читаем Трилобиты: Свидетели эволюции полностью

Взгляните внимательнее на глаз трилобита, отметьте в нем соты крошечных линз. Как и многие другие природные формы, линзы шестиугольные. Они, подобно многим кораллам или глазам насекомых и даже лоскутным одеялам, строго следуют законам геометрии. Если маленькие одинаковые объекты свести вместе и тесно прижать друг к другу, они естественным образом преобразуются в шестиугольники. В такой форме давление со всех сторон выравнивается. Центры прилежащих шестиугольников находятся на равном расстоянии один от другого. Поэтому линзы у трилобита в среднем длинные и тонкие — сотые доли миллиметра, кристаллографическая ось с проходит вдоль, но при этом в поперечнике они шестиугольные. Если бы глаз был совершенно плоским, его поверхность выглядела бы удручающе однообразно, как узор линолеума. Но лист шестиугольников изогнулся, геометрия определила новые правила — и вот вы замечаете то тут, то там линзы необычной формы или небольшой промежуток между двумя строчками линз, необходимый, чтобы оформить выпуклость глаза. (Нам всем знакомы эти предписания геометрии, которые невольно исполняешь, заворачивая футбольный мяч в подарочную обертку.) Но даже с учетом этих правил глаза у некоторых трилобитов феноменально правильны — линии шестиугольников закручиваются наискось плавными спиралями снизу доверху.

Юан заметил еще кое-что любопытное: в верхней части глаза располагались линзы меньшего размера. Поверхность глаза — ее называют роговицей — должна была по ходу роста линять вместе с другими жесткими наружными покровами. И глаз тоже рос в согласии с другими частями тела: после каждой линьки в глазу добавлялись новые линзы, затем панцирь снова затвердевал. Новые кристаллы внедрялись в общую массу линз аккурат в верхушке глаза, в зоне роста. Линька за линькой, и все новые кристаллы добавляются в коллекцию глазных линз, все ниже сдвигая прежние поколения вставок; а сами линзы, сдвигаясь вниз, постепенно укрупняются. И эта разница в размерах, между прочим, помогает сформировать выпуклую глазную поверхность. Да, трилобиты дьявольски умно, как сказал бы Эркюль Пуаро, играют с миром кристаллов по правилам геометрии, и ставка в игре — зоркий глаз.

Нам неизвестно, как именно видел трилобит, потому что нервы, обслуживающие зрение, не оставили следов. Похоже на археологический артефакт — можно предполагать, зачем предмет в принципе нужен, но никогда не узнаешь, о чем думал его прежний хозяин. Как бы мы ни старались, трилобит всегда будет сохранять дистанцию: существуют границы близости, которых нам в принципе не преодолеть. Мы можем только догадываться по аналогии с современными членистоногими, что воспринимал составленный сотами глаз трилобита. Апозиционный глаз[23] не дает целостного образа (хотя у некоторых членистоногих глазные линзы организованы так, что вместе создают сложный согласованный образ). Глаз с многочисленными линзами особенно хорошо приспособлен улавливать движение. Если по дну приближается какое-либо существо, это движение зарегистрируют одна за другой множество линз, уловив световые помехи на фоне обычного ландшафта. Если сигнал тревожный, трилобит предпримет спасительные действия: либо свернется в шар, либо удерет поскорее. Смотреть глазами трилобита — значит собирать информацию по кусочкам, так и хочется сказать: по трилобитам. Животное не способно было видеть так, как видим мы, оно воспринимало мир сотней световых пятнышек, словно пуантилист с палитрой из призм.

Глаза трилобита. Голохроальный глаз Pricydopyge (вверху) состоит из многочисленных шестиугольных линз, которые приспособлены улавливать малейшие движения. Специализированный шизохроальный глаз Phacops (внизу), имеет существенно меньше линз, и они сферической формы. Оба типа глаз служили своим хозяевам в конкретных местах обитания и были нацелены на конкретные задачи. (Фотография любезно передана Юаном Кларксоном.)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже