Читаем Царство количества и знамения времени полностью

Чтобы еще больше убедиться в этом, мы оставим в стороне физическое пространство и пространство тел, чтобы рассмотреть только геометрическое пространство в собственном смысле слова, которое, конечно же, и есть пространство, сведенное к самому себе, если можно так сказать; обращается ли реально геометрия, изучая это пространство, к чему-либо другому, кроме понятий строго количественных? В данном случае, разумеется, речь идет о профанной современной геометрии, и сразу же добавим, что если в ней еще и сохранилось нечто, не сводимое к количеству, то не следует ли непосредственно из этого, что в сфере физических наук еще более незаконно и невозможно претендовать на то, чтобы все сводилось к нему? Мы не будем здесь говорить даже о том, что касается взаимного расположения, потому что оно играет достаточно заметную роль только в некоторых специальных областях геометрии, и строго говоря, их можно не рассматривать как составную часть чистой геометрии;[19] но в элементарной геометрии рассматривается только величина фигур, а также их формы; осмелится ли все же геометр, в наибольшей степени впитавший современные концепции, утверждать, например, что треугольник и квадрат с равными площадями, представляют собою одно и то же? Он только скажет, что эти две фигуры «эквивалентны», понимая под этим, очевидно, "в отношении их величины"; но он будет вынужден признать, что в другом отношении, в отношении формы, есть нечто, что их отличает, и что раз равенство величин не ведет к подобию форм, то значит, форма не сводима к количеству. Пойдем дальше: существует целый раздел элементарной геометрии, в котором не применимо количественное рассмотрение, это теория подобия фигур. Действительно, подобие определяется исключительно через форму и целиком независимо от величины фигур, что позволяет сказать, что оно представляет чисто качественный порядок.[20] Если теперь мы спросим, что представляет собою по существу эта пространственная форма, то мы заметим, что она может быть определена через ансамбль направлений: в каждой точке линии направление, о котором идет речь, отмечается ее касательной, и ансамбль касательных определяет форму этой линии; в геометрии трех измерений то же самое можно сказать о поверхностях, рассматривая вместо касательных прямых касательные плоскости; очевидно, также, что это значимо как для самих тел, так и для простых геометрических фигур, так как форма тела есть не что иное, как форма поверхности, ограничивающая ее объем. Итак, мы пришли к заключению, что сказанное нами относительно взаимного расположения тел (ситуации) позволяет предполагать следующее: именно понятие направления представляет, в конечном счете, подлинный качественный элемент, присущий самой природе пространства, равно как понятие величины представляет элемент количественный; и таким образом, пространство не однородное, но дифференцированное по своим направлениям, есть то, что мы можем назвать «качественным» пространством.

Истинное пространство это как раз «качественное» пространство, и не только с физической точки зрения, но и с геометрической, как мы это видели только что. Действительно, однородное пространство вовсе не имеет никакого существования в собственном смысле слова, так как оно есть не более, чем полная виртуальность. Чтобы быть измеримым, то есть, согласно тому, что мы только что объяснили, чтобы быть действительно реализованным, пространство должно с необходимостью соотноситься с ансамблем определенных направлений; притом, эти направления появляются как лучи, эманирующие из центра, исходя из которого они формируют крест трех измерений, и у нас нет необходимости еще раз напоминать о той значительной роли, которую они играют в символизме всех традиционных учений.[21] Можно даже представить себе, что именно вернув рассмотрению направлений пространства его реальное значение, можно было бы придать геометрии, по крайней мере по большей части, тот глубокий смысл, который она потеряла; нельзя не заметить, что это потребовало бы далеко идущей работы, как в этом можно легко убедиться, если принять во внимание то действительное влияние, которое это рассмотрение оказывает на все то, что соотносится с самим устройством традиционных обществ.[22]

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия