Читаем Целостный метод системной технологии и системная экология полностью

Он, конечно, подобен вопросу, возникающему в связи с разложением сигнала в совокупности гармонических составляющих с помощью преобразования Фурье – существуют ли гармоники, является ли на самом деле любой сигнал суммой синусоидальных сигналов. Ответ на второй вопрос известен – гармонические сигналы содержатся в реальных сигналах, т.е. сигналы разложимы на гармонические сигналы и, даже более, для многих сигналов, например, звуков музыки, именно та их часть, которая представима в виде гармоник, наиболее полно отражает этот сигнал, его «тембр», как инструмент познания данного сигнала. Кроме этого, есть сигналы, суть которых можно описать одной гармонической составляющей, одной нотой. Правда, большинство сигналов сложны и их недостаточно представить одной или многими гармониками; необходимы еще и другие описания данных сигналов.

Ответ на первый вопрос можно изложить в той же последовательности – системы содержатся в реальных частях среды, т.е. описания материальных объектов представимы системами. Даже более, для многих объектов именно та их часть, которая представима в виде системы, наиболее полно отражает этот объект, как инструмент познания данного объекта. Кроме этого, есть объекты, суть которых можно описать одной системой, одной моделью системы. Правда, большинство объектов познания сложны и их недостаточно представлять моделями большой и/или сложной системы; необходимы еще и другие описания данных материальных объектов.

Далее, при реализации некоторого замысла, проекта системы реальный объект, реализующий этот замысел (либо проект), конечно, является системой, повторяющей данный замысел (либо проект). Затем, на протяжении своего жизненного цикла он изменяется и приобретает многие новые черты, в том числе, несистемные, а также и черты новых систем, не предусмотренных при первоначальном замысле – эти общеизвестные реалии можно отразить, перефразируя известное высказывание В.С. Черномырдина: «хотели систему, а получилось, как всегда».

Другими словами, объекты материального мира содержат, конечно, части, являющиеся системами «по своей природе» или по замыслу создавшего их разума. Но в них есть и части, не подпадающие под описания в виде систем.

Значение системной методологии объясняется, как известно, тремя основными причинами.

Во-первых, большинство традиционных научных дисциплин – биология, психология, экология, лингвистика, математика, социология и др., дополнили объекты своего рассмотрения моделями систем.

Во-вторых, технический прогресс привел к тому, что объектами проектирования, конструирования и производства оказались большие и сложные системы. Поэтому возник комплекс новых дисциплин, таких, как кибернетика, информатика, бионика и др., одна из основных задач которых – моделирование систем.

Наконец, в-третьих, появление в науке, технике и производстве проблем исследования, проектирования и реализации систем повысило методологическую роль системных исследований.

Термин "система" охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно взаимодействуем с системами транспорта и связи (телефон, телеграф и т.д.) и экономическими системами. Исаак Ньютон назвал "системой мира" предмет своих исследований. Модель системы понимается и как план, метод, порядок, устройство, Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников и др. специалистов такое распространение.

● Для целей данного раздела необходимо также описать представления о большой и сложной системах.

Определение большой системы дано В.И. Чернецким в первом, по сведениям автора, учебном издании по данному предмету[20] в следующем виде:

«большая система (БС) есть система, представляющая собой совокупность взаимосвязанных управляемых подсистем, объединенных общей системой управления, характерной особенностью которой является наличие выделяемых частей. При чем для каждой части можно определить:

– цель функционирования, подчиненную общей цели всей системы,

– участие в системе людей, машин и природной среды,

– существование внутренних материальных, энергетических и информационных связей между частями системы, а также наличие внешних связей рассматриваемой системы с другими».

Там же В.И. Чернецким для больших и сложных систем сформулированы Закон информационного взаимодействия и Закон информационных ассоциаций, а также (совместно с Д.В. Бакурадзе) модель информационной динамики сложной системы, необходимые для повышения эффективности управления комплексными разработками.

Для лучшего усвоения определений большой системы по В.И. Чернецкому, и сложной системы по А.И. Бергу (глава 1), можно дополнительно дать следующую общую «пользовательскую» характеристику:

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука