Читаем Целостный метод - теория и практика полностью

Каждая из этих пар появится в системе неравенств (4) для определенного значения ik=i1,i2, ..., in, точно (a-3)! раз по числу возможных перестановок (a-3) элементов, т.к. элементы ik, ik+N, ik+a-1 для этих пар «неподвижны».

Кроме этого, в совокупностях пар обоих видов надо выделить пары ic, ic+1, т.е. пары элементов гамильтонова цикла (1а). Тогда можно считать, что каждая из этих пар появится в системе неравенств (4) для определенного значения ik=i1,i2, ..., in точно ((a-3)!-1) раз по числу появлений пар вида а) или б) и за вычетом появлений одной пары, находящейся в левой части неравенства (4).

Аналогично и для любой пары вида iс+N iс число появлений в системе неравенств (4) для определенного значения ik равно (a-3)!. Здесь надо учесть то обстоятельство, что ik и ik+a-1 «неподвижны», т.е. они не могут участвовать в парах вида iс+N iс.

Таким образом, каждая пара элементов вида iсiс+N, не образующая ребро, инцидентное гамильтонову циклу, а также каждая пара вида iс+N iс появятся в правой части системы неравенств, записанных для определенного значения ik, точно (a-3)! раз, а ребра, инцидентные гaмильтонову циклу, точно ((a-3)!-1) раз.

Задавая последовательно значения ik от i1 до in, мы получаем каждый раз новые системы неравенств. При этом относительно любого ребра ic, ic+N участок ik, ik+1, ..., ik+a-1 «передвигается», вследствие чего любые пары ic+N ic или ic, ic+N участвуют в a-N(k+a-1-n-k+1=a-N) системах неравенств (4). То обстоятельство, что пары вида (ic+N, ic) с участием элементов ik и ik+a-1 в каждой системе неравенств невозможны, приводит к уменьшению числа появлений каждого такого вида пар ic+N ic в системе (4) для данного N на две.

Ребра ic ic+1 участвуют, таким образом, в (a-1) системах неравенств, если, конечно, (a-3)!-1 ? [1] или a ? 5, т.е., если они по условию вообще появляются в правой части системы неравенств для любого ik.

Отсюда очевидно, что любое ребро ? (ikik+N), N ? 1, графа будет повторяться в правых частях n систем неравенств (4) (a – N) раз для ik= i1, i2, ..., in.

Следовательно, правая часть системы (4) примет вид:

Итак, условие a-оптимальности примет вид: для a ? 5. После простых преобразований получаем для a ? 5.

Отсюда получаем условие n-оптимальности (a=n)

И, далее, условие (n +1)-оптимальности (a=n+1), т.е. условие оптимальности собственно гамильтонова цикла, принимает вид Можно усилить условие (7), введя вместо проверки суммарного неравенства проверку по всем k. Получим условия а-оптимальности гaмильтонова цикла в виде: a ? 5; k = 1, 2, ..., n. Выше было показано, что a1-оптимальный гамильтонов цикл a2-оптимален, если a1 > a2.

Поэтому условие оптимальности гамильтонова цикла можно преобразовать к виду (a = n + 1):

• «Принцип обогащения» целостного подхода применительно к решению задачи о коммивояжере (ЗОК) заключается в следующем: с помощью некоторого условия проверить все ветви графа на наличие полезных свойств (в данном случае это «способность» участвовать в оптимальном гамильтоновом цикле) и для дальнейшего решения задачи оставить только эти «полезные» ветви. В случае, когда используемое условие достаточно сильно, после этой проверки останутся только ветви оптимального гамильтонова цикла. В другом случае из рассмотрения будет исключена часть ветвей графа, что дает возможность сократить время поиска решения с применением какого-либо алгоритма.
Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже